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1. Executive summary 
This work package intends to carry out frontier research with the aim of improving our 
understanding and representation of the role of technical change for climate change control. We 
design a new, unbiased estimator of the learning rate – the key element of endogenous 
technological change in integrated assessment models, analyse the historical relation between 
learning rate, R&D spending and changes in material prices, design a new tool for forecasting 
efficiency of energy use and construct two datasets containing data on key power generation 
technologies.  

1.1 Introduction 

Technological change is recognized as a one of the key elements of the carbon strategy. 
Improvement in the efficiency of clean energy production and increased efficiency in energy use are 
perhaps the most straightforward paths towards a wealthy and green future for Europe.  Integrated 
Assessment Models must reflect this pivotal role of technological change. When forecasting for the 
long term, such models needs to correctly identify the drivers of technological change, accurately 
describe the process of green innovation capturing its main features – such as spillover effects and 
delayed adoption and predict its consequences for the economy and the environment. The work 
that was carried out within Work Package 4.1 of the ADVANCE project made several significant 
steps in this direction. 

We improve the representation of technological change in Integrated Assessment Models (IAMs) by 
conducting research in three areas.  

First, we worked on development of the learning curve – the most popular tool used so far to 
endogenize technological change in IAMs. The learning curve is a simple log-linear relation 
between cumulative installed capacity of a green technology (e.g. capacity of wind farms) and its 
cost (price of wind turbines). It offers modelers a simple way to forecast the drop in technology price 
after an increase in demand. The simplicity of the learning curve has been the reason for its 
success: a learning-by-doing process modelled along its lines is included in almost any endogenous 
technological change IAM. Given the relevance of this concept, we intentionally chose to work on its 
developments and improvements rather than proposing some new framework to endogenize 
technological change. Specifically, we provide new estimates of the learning rate (i.e. the slope of 
the curve), more robust and more consistent with the economic theory. We also endogenize the 
learning rate by analysing the historical relation between learning rate, public and private R&D 
spending and changes in material prices. 

The second line of research focused on the efficiency of energy use. An increase in efficiency is 
crucial for reduction in energy consumption while maintaining healthy economic growth. Yet, until 
now, IAM did not model the way in which technological change shapes the demand for energy, with 
a few exceptions. We design a new tool which can utilize forecasts of energy expenditures to 
predict future increase in efficiency of energy use. The tool consists of the system of two equations 
that are first derived from the macroeconomic theory and then calibrated using a rigorous 
econometric model. 

The third activity performed within this work package was the collection of data that can be relevant 
for calibration and development of large energy sector simulation models. We construct two 
databases. The aim of the TECHPOL database is to provide reliable data on the costs and 
performance of representative supply and demand energy technologies. In the second database we 
compute the global public energy R&D budgets for the key energy technologies. 

1.2 Summary of Work Performed 

We summarize here the work performed, and attach longer scientific articles with a much deeper 
level of details.  
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The first goal of the work on the learning curve was to provide more precise, unbiased estimates of 
learning rates. The literature often suggests that OLS estimation of the reduced form relation 
between technology costs and cumulated installed capacity provides appropriate estimates. We 
propose a simple model that allows us to determine precisely under what conditions the reduced 
form OLS estimation of the learning rate can be utilized within IAMs. Subsequently, we argue that 
these conditions are highly unlikely to hold. Therefore we propose a new methodology to estimate 
the learning rate. These new rates are much better suited for use in IAMs because they rely on 
much milder assumptions. The details of the study are described in chapter 2: What does the 
Reduced Form of the Learning Curve Hide. 

Second, we present descriptive statistics of learning rates for wind and PV technologies in the 
period 1980-2010. The analysis aims at a better understanding (1) the dynamics of learning effects 
and (2) the impacts of R&D and material prices on the rate of technology improvement, measured 
by the learning rate. The work is described in chapter 1: The Dynamics of the Learning Rate and 
New Energy Technologies Datasets. 

Finally, to forecast improvements in efficiency of energy use we developed a model that links 
energy efficiency gain with generation of new ideas and the latter with energy expenditure. The 
simple logic behind the latter link is that an increase in energy expenditure increases the incentives 
for energy saving innovations. The first part of the study derives the relation between 
aforementioned variables using macroeconomic model. The second step estimates the theoretical 
model using data on energy prices, energy consumption and patents. Both, the theoretical and 
empirical models are presented in chapter 3: Induced Technology Change in Energy Intensive 
Sectors. 

Regarding the task of data collection, the TECHPOL database developed by UPMF-EDDEN 
gathers a first set of data on new energy technologies based on reference papers and reports, and 
expert assumptions. In order to maximize their reliability, the available data are analyzed and 
processed so as to facilitate the comparability. The idea is to collect information on new 
technologies on a regular basis as to improve expert assumptions regarding future costs and 
performance and to provide a reliable vision of technical change in the energy sector. The second 
dataset containts information on public R&D budgets for key power generation technologies. The 
datasets are described in the chapter 1.  

1.3 Results and Conclusions 

Comparing our estimates of learning rate with previous available results confirmed our initial 
theoretical prediction that past estimates are biased upward. Using the data on wind turbines 
technology, we find that the unbiased two stage estimate of the learning rate is 6.7-6.9% - more 
than one percent lower when compared to the OLS estimate. The lower learning rate implies 
smaller response of wind turbines prices to increase in demand and higher mitigation costs. 

The descriptive statistics of learning rates for wind and solar technologies using the TECHPOL 
dataset suggest that the two technologies show the same profile with a period during which learning 
is lower than average, followed by an sharper decrease in cost, then after 2000 a stabilization or 
even an increase in costs. The average learning rate is about half for Wind, as for PV (LR wind = 
9% LR PV = 23%). The novelty in the analysis is to examine if the variation in the learning rate over 
time can be explained with the dynamics of R&D spending and material costs. Figure 9 indicates 
that learning rate and R&D spending may move together, though it clearly indicates that there are 
periods which display a gap between R&D knowledge stock and learning rate. However those 
periods are consistent with the periods of high or low level in material prices. 
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Figure 1: Learning rates and lagged KS-gr (Wind left and PV right) 
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Further explorations, taking into account the weight of materials in the technology costs, either by 
econometric or by analytical methods, will allow further defining satisfactory specifications of a 
dynamic learning curve with an endogenous learning rate, explained both by growth in the 
knowledge stock and by the materials price level.   

The model which examines the drivers and consequences of energy saving technological change 
predicts that the R&D effort for energy saving technologies in any sector is determined by energy 
expenditure in this sector and by the parameters governing the innovation process. The 
econometric estimation suggests that an increase in energy expenditure by 10% results in 9% 
increase in number of energy related patents. An increase in a flow of patents by 1% results then 
leads to increase in growth of energy efficiency by 0.3%. The empirical model also shows that both 
intertemporal and international spillovers play a significant role in innovation process. 

In the TECHPOL database, almost 30 different generic technologies are considered which belong to 
three broad categories: large scale power generation, renewable power generation and transport 
technologies. The large scale power generation includes pulverized coal, integrated gasification, 

gas turbines, conventional oil power plants, 2
nd

 and 3
rd
 generation nuclear technologies as well as 

CO2 capture technologies. The renewable category includes hydraulic power plants, small and 
large PV systems, concentrating solar power and biomass. Some examples of variables included in 
the database are overnight investment costs, construction time, technical lifetime, load factor, 
operation and maintenance costs and electrical efficiency. 

In the dataset of energy technologies, public R&D we construct tables of year by year and 
cumulative public energy R&D according to the IEA main technological categories. 

1.4 Deviations 

No deviations from the workplan 

1.5 List of Abbreviations 

IEA  International Energy Agency 

IAM  Integrated Assessment Model 

OLS  Ordinary Least Squares 

R&D   Research and Development 

PV  Photovoltaic panels 
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The Dynamics of Learning Rates and New Energy Technologies 
Datasets 

1. Revisiting the experience in technological innovation modeling 
in the POLES model 

Technological change is one of the most important determinants of the results of energy 
models for climate policy analysis. For that reason several EU Research Programs (TEEM1, 
SAPIENT2, SAPIENTIA3, CASCADE MINTS4, MENGTECH5...) have been dedicated to this 
complex and task. Whle all model may function with exogenous technology hypotheses, the 
endogenization of technical change in applied energy models has been structured by the 
learning curve / learning factor concept, which is a simplifications of a very complex system 
of factors affecting technology costs and performances. Behind the learning curve different 
factors impact the cost of technologies: public and private energy R&D, cost structures 
according to different categories, technology clusters, international and intertechnology 
spillovers, industry and market structure, financial incentives, price of materials (see the 
following table). 

  

                                                
 

1 Technology evolution and energy modelling. 
2 System Analysis for Progress and Innovation in energy technologies for Integrated Assessment 
Research Project DG RES, 5th Framework Programme Contract N° ENK6-CT-2002-00615 
3 Systems Analysis for Progress and Innovation in Energy Technologies for Integrated Assessment 
4 CAse Study Comparisons And Development of Energy Models for INtegrated 
Technology Systems, SSP6-CT-2003-502445, January 2004 to December 2006.  
5 Modelling of Energy Technologies Prospective in a General and Partial Equilibrium Framework, 
Contract no. 020121 
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Table 1 : Multi-factor impacts on learning curves 

 

Source: from P. Criqui presentation at AMPERE/ADAVANCE 2013 meeting, Seville 

The matrix of factors and impacts on cost components is far too complex to be integrated as 
such in applied models. Modellers face significant difficulties and today, the question of using 
synthetic or detailed approaches for technical change remains open.  

Aside from the issue of causality, the use of experience curves for forecasting or modelling 
future cost dynamics in new energy technologies is beset by a number of uncertainties that 
can significantly influence the results of the modelling exercises. For example: what is a 
plausible learning rate for a new energy technology or for a mature one at given time horizon 
in the future? Does the learning rate remain constant over time, or does it change over the 
modelling period? Do costs always decline, or might they also increase and if so, why and 
how? This research task aims to improve our understanding of the drivers behind induced 
technical change as well as their representation and calibration in the POLES model. This 
has been accomplished through several sub-tasks. 

In past research within EU projects, different approaches have been used in the POLES 
model, with an increasing sophistication regarding endogenous technological change: 

1. One factor learning curve with learning by doing, or experience curves 
2. Two factor learning curves incorporating the impact of dedicated R&D, i.e. with 

learning by doing and learning by searching 
3. Complex two factor learning curve incorporating floor cost, clusters and spillovers, 

network effects 
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learning curves (material prices, industry structure and capacity utilization rate, 
market competition...). 
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The tree following sections shed light on the strengths, limitations, and policy implications of 
these approaches. Then we propose suggestions on ways to improve the characterization of 
learning curves on the results of the POLES model. 

1.1. One factor learning curves 

The TEEM project was one of the first EU Research projects with an important effort on 
estimating exogenous learning rates for different electricity supply technologies and on the 
endogenisation of technical change. For estimating exogenous learning rates attention has 
been paid to the combination of top-down (econometric) and bottom-up (expert-based) 
approaches. 

For the endogenisation of technical change, the common log-linear form of an experience 
curve (Log(COST) = b*log(CAP)+a) have been easily incorporated into general equilibrium 
models or partial equilibrium models (POLES, PRIMES, ERIS, GMM, MARKAL, TIMES-
G3…..). The report argues that uncertainties in future technology costs are reflected by 
uncertainties in the learning coefficient, b, and the appropriate value of cumulative production 
or capacity of a technology (or cluster of technologies) CAP. The latter variable represents is 
a surrogate for all factors that influence technology costs (learning-by-doing, learning by-
using, investment in R&D, spillovers from other activities, plus a host of other possible factors 
(Yeh, Rubin, 2012)). 

This is clearly an oversimplification, which has been however regarded as an important step 
toward more realistic representations of the dependency of cost reductions on other 
variables. Furthermore, deviations from a log–linear model have been recognized together 
with the variability of the learning factor (McDonald and Schrattenholzer in 2001). Applying 
the same methodology the instability is confirmed in the 2001+10 analyses presented in the 
2012 AMPERE seminar at IIASA. This presentation even provide a lot of negative learning 
rates in the last decade. So, one factor learning curves remain an imperfect representation of 
the technical change. 

Figure 1 : Variability of LRs  

 

Source: from P. Criqui presentation at AMPERE 2012 meeting, Laxenburg (based on Schrattenholzer) 

1.2. Two factor learning curves 

The specification of the two factor learning curves was driven by the aim to capture with the 
fewest parameters possible both learning by doing and learning by searching. SAPIENT and 
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SAPIENTIA projects studied the impacts on the learning rates of R&D policies through 
incorporation a formal link between the intensity of technology policy and the learning rate 
through so called TFLCs. The use of such data to estimate a “knowledge stock” (time lagged 
and depreciated R&D investment) is approximate at best and sensitive to the assumed rate 
of knowledge depreciation (Kouvaritakis et al., 2000, Barreto and Kypreos, 2004b). This 
provides the general specification of the Two Factor Learning Curve, TFLC: 

 

This mechanism identifies learning attributed to research effort (learning-by searching) and 
learning arising from the experience gained through technology uptake (learning-by-doing). 
This TFLC formulation was implemented in PROMETHEUS, POLES and ERIS (world, very 
long term), GMM (Global, Multi-regional MARKAL) and TIMES-G3 models. TFLCs have been 
estimated for 34 technological options covering hydrogen supply, storage, distribution and 
end-use technologies, the CO2 carbon capture filter (post-combustion and precombustion) 
and private passenger cars. Learning parameters have been estimated for a number of 
technical-economic characteristics – where applicable – such as capital costs, fixed 
operating and maintenance costs, efficiencies, fuel cells stack lifetime and capacity of car 
engines. The Technology Improvement Database (TIDdb) developed in SAPIENT by CNRS-
IEPE (now CNRS-EDDEN) has been an effort to develop a complete database, with all 
variables for Two Factor Learning Curves. 

While the concept of a two-factor learning curve is theoretically appealing, two significant 
problems are identified with this approach. The first is data availability. Reliable data on 
public and (especially) private-sector R&D spending is hard to collect and the quality of 
available data is often an issue (Capros et al., 2005). 

The second major shortcoming is the high degree of co-linearity between the two variables. 
That is, both R&D investments and cumulative production or capacity may respond to the 
same drivers and/or directly influence one another (Barreto and Kypreos, 2004b; Lindman 
and Söderholm, in press; Söderholm and Klassen, 2007). An increase in product sales, for 
example, may stimulate R&D spending to further improve the product. In addition, from a 
policy point of view there is a distinct difference between government-funded and private-
sector R&D. Since these funding sources can have very different impacts on the cost and 
performance of a specific technology (Wene, 2008), R&D policy conclusions based on a 
single (combined public/private) R&D indicator can be quite misleading. 

Treatment of knowledge spillovers across technology components 

Treatment of knowledge spillovers may be important for parameterizing technological 
relationships. For that reason in the CASCADE MINTS project have been introduced key 
technology components in hydrogen production technologies, also shared by technologies in 
other sectors. Learning takes place at the level of these components, rather than at the level 
of individual technologies. The set of all technologies sharing a learning component forms a 
cluster. The costs of a technology with learning components is proportional to the costs of 
the key components that make up the technology, plus optionally some additional non-
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learning part. Thus, with learning clusters it is possible to describe technological spill-over 
effects, in the form of cost decreases as a consequence of sharing experience among 
related technologies, even between technologies in different sectors. 

This approach has been applied to all technologies identified in the CASCADE MINTS 
database that are suitable for clustering. However, when no clear indication could be derived 
on how to form clusters of technologies, “weak clustering” was introduced. “Weak clustering” 
does not identify individual components which learn separately. This connection is identified 
when the largest part of the improvement of the technologies belonging to such a cluster is 
specific to each technology and independent of the progress of the basic technology. The 
datasets constructed within CASCADE MINTS containing information on the recent 
improvements in the technical and economic characteristics of the hydrogen related 
technologies in the light of R&D effort directed to them, have provided the critical information 
for the statistical estimation of the TFLC equations with regard to different technological 
clusters of hydrogen related technologies. 

Adding a floor on technology-specific costs 

Another important issue was to constrain the learning process to the mere theoretical 
possibilities as they emerge from expert judgements. This means that the progress of a 
particular technical economic characteristic (such as the efficiency or capital cost) cannot go 
below a notional absolute limit, which is identified as a “floor”. 

In the case of energy technologies, the SAPIENTIA project has proposed that resource, 
market and theoretical technical constraints eventually put a floor on technology-specific 
costs (McDonald and Schrattenholzer, 2001). Large-scale energy-economic models like 
POLES, PRIMES, projecting costs for many decades into the future, have imposed long-run 
price floors for specific energy technologies, below which learning curve projections cannot 
fall (Barreto and Kypreos, 2004a; van der Zwaan et al., 2002). This, in essence, changes the 
assumed shape of the long-run experience curve. 

Learning network effects 

CASCADE MINTS also examined the system related aspects of hydrogen technologies with 
emphasis on identifying and describing learning networks created around hydrogen 
technologies or technology clusters. A technology cluster is formed by a group of 
technologies that share a common component. Taking into account – to the extent possible – 
learning effects that could operate synergetically (by improving several hydrogen related 
technologies together) or competitively (by favouring at the same time hydrogen technologies 
and other integrated technology options) different hydrogen technology cluster matrices have 
been set up. These matrices have been used by the energy system models participating in 
the project to model technology spill-over and learning effects involving network effects for 
the different types of hydrogen technologies. 

1.3. Three-factor or multi-factor learning curve models 

Multi-factor learning curves are essentially an extension of the one-factor and two-factor 
models. During the last decade an increasing number of long-term integrated assessment 
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models for energy and climate policy analysis have incorporated mechanisms of endogenous 
technological change in which the rate of technological improvement and/or cost reduction 
depends on other variables in the model. They capture an apparent empirical regularity but 
there are questions about extrapolating these approaches to new technologies. There are 
difficulties in finding empirically robust values for the key learning parameters, which have a 
large impact on long term results. Explanatory variables in addition to cumulative production 
or capacity have included economies-of-scale (Joskow and Rose, 1985; Nemet, 2006; 
Söderholm and Sundqvist, 2007), input prices for materials (Joskow and Rose, 1985; Nemet, 
2006; Söderholm and Sundqvist, 2007; Panzer, 2012), labor costs (Joskow and Rose, 1985), 
efficiency improvement (Joskow and Rose, 1985; Nemet, 2006) and many others. 

Multi-factor models of this type offer improved explanations of the processes that contribute 
to cost reductions for the technology under study, and thus arguably provide more accurate 
assessments about the magnitude of investments or subsidies needed to bring down the 
cost of a technology (Nordhaus, 2009). Thus, they provide greater precision in projecting the 
effect of a given factor change on the future cost of that technology. A key drawback, 
however, is that the formulation and results from these models cannot be easily extrapolated 
or used to make cost projections for other technologies with different characteristics (Yeh, 
Rubin, 2012). In recent years, studies have in particular identified the impacts of 
industry/market structure (price/cost margins, industry cycles). Other concentrated on the 
inflation in commodities’ prices during the « Great Convergence » period (1998-2008, see 
Figure 2). 

Figure 2: Commodity Industrial inputs Price Index Monthly Price – Index Number 

 

Source: Index Mundi 

The observed changes in the price of materials for industry (steel, cement, rare earth 
metals...) probably explain – together with industry competition factors – a significant part of 
the variability in learning rates, in particular the shift observed after 2000 (see Figure 3 and 
Table 2).  

Figure 3: Historic learning curves 1980-2000 
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Table 2: Historic and projected learning  factors (scenario AM2R2 in AMPERE) 

 

 

1.4. Conclusion 

Modelling exercises are frequently used to assist decision makers, and the learning curve 
approach to technology dynamics is not necessarily more uncertain than other aspects of the 
modelling systems. Even models themselves, being simplified representations of reality, may 
have an intrinsic uncertainty with regard to future developments. No single approach appears 
to dominate on all these dimensions, and different approaches may be chosen, depending 
on the purpose of the analysis, be it positive or normative. 

The work currently underway in the ADVANCE project can be presented as an effort towards 
a simplified but robust and versatile representation of the learning curves. While many efforts 
have been dedicated to the use of Two Factor Learning Curves, it came out from the first 
seminar organised by IPTS in 2012 (Wiesenthal et al., 2012), that it may be wiser to use one 
factor learning curves, while dedicating separate efforts to the impacts of R&D. 
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Figure 4: Closing the black box again? 

 

Source: from NEMET, 2007 

The ideas currently explored in ADVANCE take this judgement into account. The direction is 
to keep the black box of technical change closed in the modelling exercises while using a 
simple one factor learning curve (with a floor cost) but then concentrating on the changes of 
the learning rates and identifying robust relations between key explanatory variables, such as 
R&D (knowledge stock) or the price of the materials used in the different technologies. 
Section 2. below first explores the dynamic behaviour of wind and PV technologies over the 
past 30 years. 
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2. A descriptive statistics analysis of learning rates for wind and 
PV technologies (1980-2010) 

In order to prepare for new model specifications for a reliable assessment of learning effects 
with consideration of the key variables identified in the literature on technical change, it is 
relevant to have a close look at the learning dynamics for the two most important renewable 
technologies, i.e. wind (onshore) and PV. This analysis is based on the database presented 
in Section 3. below and it aims at a better understanding of: i. the dynamics of learning 
effects and ii. the impacts of R&D and material price on the rhythm of technology 
improvement, measured by the learning rate. 

2.1.  The variability of learning rates along time 

The profiles of the learning curves for Wind and PV, displayed in Figure 5 are well known 
and present two similar features: 

1. These curves are not straight lines 
2. When a simple regression line is drawn for the 30 years, the two technologies show 

the same profile with a period during which learning is lower than average, followed 
by an acceleration in cost decreases, then after 2000 a stabilization or even an 
increase in costs 

 
They also show two dissimilarities: 

1. The average learning rate, as measured by the regression, is about half for Wind, as 
for PV [LR wind = 1-2^(-0.138) = 9%      LR PV = 1-2^(-0.368) = 23%] 

2. By the end of the period under consideration, the cost of PV is again rapidly 
decreasing, while the cost of wind is still on the rise 

 
Figure 5: One factor learning curves, cost per kWe versus installed capacity (Wind left 
and PV right) 

 

Figure 6 below simply plots the value of the learning rates as measured on a rolling two 
years period. This illustrates the variability in learning rates, with a maximum of 61% for wind 
in 1989 and of 52% for PV in 1993. After this peak Wind LR2 almost constantly decreases 
towards negative levels of about -15% between 2006 and 2010. Conversely PV LR2 only 
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drops to negative levels of about -5% between 2002 and 2006, before to climb up again to 
20% later on.  

Figure 6: Historical learning rates (rolling two years period, Wind left and PV right) 

 

2.2. Two candidate explanatory variables: the increase in the knowledge stock 
and the price of materials 

Among the different factors that may explain this instability in apparent learning rates, one 
can identify from the literature synthesized in Section 1., the role of R&D through the 
Knowledge Stock (KS) and the price of the materials that are critical for the technology 
considered (Figure 7). 

The variation of the knowledge stock is measured from IEA data on the R&D effort by 
technology (presented in Section 3.). The KS for one year is calculated as the cumulative 
R&D effort (without any consideration at this stage of scrapping). The yearly increase in KS 
displays the same interesting feature for the two technologies: after an initial period of very 
strong increase, which can be easily explained by the low initial stock, the KS rate of 
increase rapidly goes down to about 10%/yr by the mid 80s and then stabilizes at a level of 
about 5%/yr or more during a relatively long period (1990-2008). This stability of the KS 
growth rate denotes a gently rising R&D effort all along the period and the 5%/yr could 
probably be used as a useful benchmark for developing alternative hypotheses in scenario 
development for R&D policy.  

Figure 7: Increase in the knowledge stock and price of materials (Wind left and PV 
right) 
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The index of metals used in industry (in constant money) and the price of silicon have been 
used in this exercise as proxies for the cost of the materials incorporated in the two 
technologies. A notable feature in Figure 7 is the fact that these two variables have incurred 
significant changes in their level over the period under review: the price of metals for industry 
almost doubled by the end of the ‘00s compared with the level in the ‘90s; similarly the silicon 
price index has been of 50 between 1995 and 2005, down from a 200 a level and before a 
steep rise to 150 by the end of the period. Further investigations will try to measure the 
precise impact of this increase in the prices of materials on the costs of the two technologies. 

2.3. A rolling analysis of the rise and fall of learning rates  

In order to better characterize the dynamics of learning rates in relation with the KS growth 
rate (KS-gr), Figure 8 provides a rolling period analysis. The most regular shapes are 
provided with an 8 years rolling period. In both cases one can identify an initial period with a 
high KS-gr and a rapidly rising LR, towards a level of 40 % about fifteen years after the 
starting point. 

Then the learning rate decreases sharply while the KS-gr is stabilized around 5 %/yr, 
towards negative values for wind, or near-zero and then again positive for PV. This Figure 
clearly indicate that there have been at least two clearly distinct periods in the dynamics of 
learning for the two considered technologies: early stage, with strong delayed impacts of the 
increase in KS and a maturity stage with stabilized growth of KS at a moderate level and a 
slowdown in learning. Recent dynamics in PV indicate that there might exist a third phase 
with a revival in the learning effect which still needs to explored. 
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Figure 8: AVGR = Average Growth Rate of knowledge stock (8 years rolling period) 
(Wind left and PV right) 

 

2.4. Accounting for lags in the impacts of R&D and KS increase  

At this stage delays in the impacts of KS increase may be explored while plotting the learning 
rates with the lagged KS-gr variable. Ideally the two curves should develop in parallel, high 
LR being explained by a strong R&D in the preceding years, and conversely.  The correlation 
is far from perfect as can be seen from Figure 9. However periods which display a gap 
between KS-gr and LR are consistent with the periods of high or low level in material prices: 

− For wind, the lasting period of negative LR indeed corresponds with the period of 
highest industrial metals prices after 2003 

− For PV, the period of the late ’90s and early ‘00s, with very low silicon prices displays 
a high (30 %) and stable LR, while the LR drops to near-zero value when the silicon 
price significantly increases until 2008 

Figure 9: Learning rates and lagged KS-gr (Wind left and PV right) 

 

The relation is confirmed when the LR is plotted against the lagged KS-gr, which through a 
simple linear regression suggest a 1 to 2 ratio of the KS-gr to the LR, notwithstanding the 
impacts of the changes in Material prices: a 5% increase in the KS is consistent with a 10% 
learning rate in both cases (again notwithstanding the material price). 
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Figure 10: Learning rates plotted against lagged KS-gr (Wind left and PV right) 

 

Further explorations, taking into account the weight of materials in the technology costs, 
either by econometric or by analytical methods, will allow further defining satisfactory 
specifications of a dynamic learning curve with an endogenous learning rate, explained 
both by the growth in the knowledge stock and by the materials price level.   
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3. TECHPOL – a database on costs / performance of new energy 
technologies  

3.1. Structure of the database 

The aim of the TECHPOL database is to provide reliable data on the costs and performance 
of representative supply and demand energy technologies to be used in large energy sector 
simulation models.  

Information on performance / costs of new energy technologies may be available but raise 
different problems of accessibility, comparability and reliability. The TECHPOL database 
gathers a first set of data on new energy technologies based on reference papers and 
reports, and expert assumptions. In order to maximise their reliability, the available data are 
analysed and processed so as to facilitate the comparability of existing data. Comparing 
existing data allows establishing reference values on costs and performance for key power 
generation technologies including capture and storage. 

The TECHPOL database is built on past experience with technology data collection 
developed during former European research projects (such as Sapientia, Cascade, …). Its 
aim is to go beyond the selective collection of data which may rapidly become out of date 
when disruptive technologies are concerned. The idea is to collect information on new 
technologies on a regular basis in order to improve expert assumptions regarding future 
costs and performance and to provide a reliable vision of technical change in the energy 
sector.  

Key technologies for electricity production 

In the TECHPOL database, almost 30 different generic technologies are considered which 
belong to 3 broad categories. 

− centralised / large scale power generation  
− distributed or renewable power generation 
− transport technologies (to be completed) 

Centralised power generation includes both fossil and nuclear electricity production. Four 
state-of-the art technologies are considered for electricity production using fossil fuels:  

− Puverised coal – Supercritical 
− Integrated gasification - Combined cycle 
− Gas turbine – Combined cycle 
− and conventional oil power plant (steam turbine) 

Two nuclear power technologies are also considered :  

− 2nd generation (PWR type) 
− and 3rd generation (EPR type) 

Three main CO² capture technologies have also been introduced for coal and natural gas 
burning plants. As far as pulverized coal and gas turbines are considered, the capture of CO² 
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takes place after combustion, when pre-combustion capture would be possible with coal 
integrated gasification combined cycle power plants.  

Key renewable energy technologies include both small and large renewable power 
generation units Hydraulic power plants are divided in two broad categories: large hydro 
refers to large-scale hydro power stations, either run-of-river or storage plants and micro 
hydro  to small units of less than 10 MW of installed capacity.  

Two basic solar energy technologies are considered, building integrated PV systems (PV 
small) and large solar plants (PV large). The concentrating solar power category (SPP) is a 
generic technology as various concentrating technologies can be used for solar thermal 
plants (parabolic troughs, central receivers and parabolic dishes). Among biomass power 
production technologies, two broad categories have been considered : direct combustion 
(steam turbine) of solid biomass (either wood or waste) with or without combined production 
of electricity.  

Main sources of data 

As explained previously, the TECHPOL database is partly based on already existing data. In 
the core database, several time series coming from bottom-up energy modelling exercices, 
have been compiled. Intentionally, a few older series of data have been kept in order to 
provide a memory of observed progression in performance and of former assumptions 
regarding technical progress. An illustration of the sources used is given below : 

− DGEMP / DIDEME, 2005, Coûts de référence de la production électrique. 
− SAPIENTIA, 2004, Technology database for the SAPIENT project 
− Royal Academy of Engineering, The cost of generating electricity, 2004 
− CEC, 2008, Energy Sources, Production Costs and Performance of Technologies for 

Power Generation, Heating and Transport 
− IEA, 2011, WEO 2010 assumptions 
− NETL, 2010, Costs and performance baseline for fossil power plants 
− OECD / IEA / NEA, 2010, Projected costs of generating electricity 
− M. MacDonald, 2010, UK Electricity generation costs update 2010 
− Kaplan, 2012, CRS report for Congress, Power plants : characteristics and costs 
− EMF, 2012, Current and prospective costs for electricity generation - Background 

paper for the model comparison on the energy roadmap 2050 
− Hearps, 2011, Renewable Energy Technology Cost Review 
− IPCC, 2010, Special Report on RES and Climate Change Mitigation 
− ISI Fraunhoffer, 2012, Levelised cost of electricity renewable energy technologies 
− WEC, 2013, Cost of energy technologies 

Content of the database 

The basic objective of the TECHPOL database is to collect the data that are necessary for 
engineering models to proceed to inter-technology competition. As far as electrical power 
plants are concerned, for example, basic information should allow the calculation of the 
discounted kWh cost. For this calculation, the following elements are necessary :  

− overnight investment cost 
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− construction time 
− technical lifetime 
− load factor 
− variable operation & maintenance cost 
− fixed O&M cost 
− electrical efficiency 

As much information as possible is collected in order to keep a detailed description of the 
technology and a precise characterisation of the data provided :  source of information, date 
of reference,  type of technology, geographical area, nature of data, …  

Figure 11 : Illustration of data collected  

 

Source : Techpol 

All the data collected are stored in the original units and then converted into euros/dollars, 
kW, kWh, ...  

3.2. Costs and performance: a first comparison of collected data  

In this chapter, selected examples of the data collected are presented. Based on these data 
the process that allows providing a first estimation of reference costs and performance is 
illustrated. Not all technologies are described thereafter but the most important new energy 
technologies in the perspective of energy transition.  

Fossil fuel power plants 

This section is mainly focused on fossil fuel power plants. Conventional pulverized coal 
power plants and integrated gasification combined cycle are, together with natural gas 
combined cycle, the key technologies using fossil fuels for centralised base load electricity 
production. To play a significant part in future supply of electricity they will probably need to 
be equipped with capture and storage technologies. These developments on fossil fuel 

Source Source detailed Title Year Primary source Energy TechnTechnology detailed Capacity Localisation Variable Units 1 Units 2
DEA Danish Energy Agency Technology data for energy plants 2010 Coal PC PC advanced steam process 400 Investment €08/kW € 2 010
DEA Danish Energy Agency Technology data for energy plants 2010 Coal PC PC advanced steam process 400 Total OM €08/MWh € 2 010
DEA Danish Energy Agency Technology data for energy plants 2010 Coal PC PC advanced steam process 400 Efficiency %
DEA Danish Energy Agency Technology data for energy plants 2010 Coal PC PC advanced steam process 400 Lifetime années
DEA Danish Energy Agency Technology data for energy plants 2010 Coal PC PC advanced steam process 400 Construction time années
CEC Commission of European Communities Energy Sources, Production Costs and Pe         2008 Coal PC PCC 800 Investment €05/kW € 2 010
CEC Commission of European Communities Energy Sources, Production Costs and Pe         2008 Coal PC PCC 800 Total OM €05/MWh € 2 010
CEC Commission of European Communities Energy Sources, Production Costs and Pe         2008 Coal PC PCC 800 Efficiency %
CEC Commission of European Communities Energy Sources, Production Costs and Pe         2008 Coal PC PCC 800 Lifetime années
CEC Commission of European Communities Energy Sources, Production Costs and Pe         2008 Coal PC PCC 800 Construction time années
Harvard Realistic costs of carbon capture 2009 NETL, 2006 Coal PC PC - Super Critic 550 Investment $06/kW € 2 010
Harvard Realistic costs of carbon capture 2009 NETL, 2006 Coal PC PC - Super Critic 550 Total OM $06/MWh € 2 010
Harvard Realistic costs of carbon capture 2009 NETL, 2006 Coal PC PC - Super Critic 550 Efficiency %
Harvard Realistic costs of carbon capture 2009 NETL, 2006 Coal PC PC - Super Critic 550 Lifetime années
Harvard Realistic costs of carbon capture 2009 NETL, 2006 Coal PC PC - Super Critic 550 Construction time années
Harvard Realistic costs of carbon capture 2009 EPRI, 2006 Coal PC PC - Super Critic 600 Investment $06/kW € 2 010
Harvard Realistic costs of carbon capture 2009 EPRI, 2006 Coal PC PC - Super Critic 600 Total OM $06/MWh € 2 010
Harvard Realistic costs of carbon capture 2009 EPRI, 2006 Coal PC PC - Super Critic 600 Efficiency %
Harvard Realistic costs of carbon capture 2009 EPRI, 2006 Coal PC PC - Super Critic 600 Lifetime années
Harvard Realistic costs of carbon capture 2009 EPRI, 2006 Coal PC PC - Super Critic 600 Construction time années
Harvard Realistic costs of carbon capture 2009 SFA, 2006 Coal PC PC - Super Critic 600 Investment $06/kW € 2 010
Harvard Realistic costs of carbon capture 2009 SFA, 2006 Coal PC PC - Super Critic 600 Total OM $06/MWh € 2 010
Harvard Realistic costs of carbon capture 2009 SFA, 2006 Coal PC PC - Super Critic 600 Efficiency %
Harvard Realistic costs of carbon capture 2009 SFA, 2006 Coal PC PC - Super Critic 600 Lifetime années
Harvard Realistic costs of carbon capture 2009 SFA, 2006 Coal PC PC - Super Critic 600 Construction time années
NETL Costs and performance baseline for foss   2010 Coal PC  Steam coal - Supercritical Investment $07/kW € 2 010
NETL Costs and performance baseline for foss   2010 Coal PC  Steam coal - Supercritical Efficiency %
OECD OECD - IEA - NEA Projected costs of generating electricity 2010 Coal PC Black coal - Supercritical Belgium Investment $ 08/kW € 2 010
OECD OECD - IEA - NEA Projected costs of generating electricity 2010 Coal PC Black coal - Supercritical Japan Investment $ 08/kW € 2 010
OECD OECD - IEA - NEA Projected costs of generating electricity 2010 Coal PC Black coal - Supercritical Germany Investment $ 08/kW € 2 010
OECD OECD - IEA - NEA Projected costs of generating electricity 2010 EPRI Coal PC Black coal - Supercritical Investment $ 08/kW € 2 010
OECD OECD - IEA - NEA Projected costs of generating electricity 2010 EESA Coal PC Black coal - Supercritical Investment $ 08/kW € 2 010
JRC Tzimas, Georgakaki, Peteves Future fossil  fuel electricity generation i      2009 Coal PC Investment € 05/kW € 2 010
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power plants are used as an illustration of the possible application of TECHPOL database to 
estimate reference costs / performance for specific new energy technologies.  

a.  Pulverised coal power plants 
As far as conventional coal power plants are concerned, 34 different references have been 
introduced in the database which gives a rather confused picture for construction cost alone 
with costs ranging from 900 €/kW to 2200 €/kW in the year 2010.    

Figure 12 : Conventional coal power plants 

 

Source : Techpol 

The margin is narrowing when power plants are discriminated according to their operating 
mode (subcritical versus supercritical). The results are presented in the following tables.  

In 2010, the average value of investment (overnight) cost for conventional coal power plans 
(pulverized coal) is close to 1500 €/kW for supercritical conditions.  

  

Source Year Primary source Energy TechnTechnology detailed Capacity Localisation Variable Units 1 Units 2 2010
DEA 2010 Coal PC PC advanced steam process 400 Investment €08/kW € 2 010 1455
CEC 2008 Coal PC PCC 800 Investment €05/kW € 2 010 1341
Harvard 2009 NETL, 2006 Coal PC PC - Super Critic 550 Investment $06/kW € 2 010 1300
Harvard 2009 EPRI, 2006 Coal PC PC - Super Critic 600 Investment $06/kW € 2 010 1453
Harvard 2009 SFA, 2006 Coal PC PC - Super Critic 600 Investment $06/kW € 2 010 1406
NETL 2010 Coal PC  Steam coal - Supercritical Investment $07/kW € 2 010 1488
OECD 2010 Coal PC Black coal - Supercritical Belgium Investment $ 08/kW € 2 010 1741
OECD 2010 Coal PC Black coal - Supercritical Japan Investment $ 08/kW € 2 010 1307
OECD 2010 Coal PC Black coal - Supercritical Germany Investment $ 08/kW € 2 010 1867
OECD 2010 EPRI Coal PC Black coal - Supercritical Investment $ 08/kW € 2 010 1432
OECD 2010 EESA Coal PC Black coal - Supercritical Investment $ 08/kW € 2 010 1374
JRC 2009 Coal PC Investment € 05/kW € 2 010 1320
IEA 2011 Coal PC average - supposed to be SC OECD Investment $ 10/kW € 2 010 1642
Worley Pa 2011 Coal PC PC supercritical 550 Investment $ 10/kW € 2 010 1458
IEA 2011 Global CCS Ins., 2 Coal PC PC supercritical 550 US Investment $ 10/kW € 2 010 1831
IEA 2011 Global CCS Ins., 2 Coal PC PC ultrasupercritical 550 US Investment $ 10/kW € 2 010 1922
IEA 2011 GHG Implementin   Coal PC PC supercritical 550 Europe Investment $ 10/kW € 2 010 1423
IEA 2011 China - UK Near 0   Coal PC PC supercritical 550 China Investment $ 10/kW € 2 010 713
IEA 2011 Coal PC PC supercritical - 1st column 20 Europe Investment $ 09/kW € 2 010 1284
IEA 2011 Coal PC PC supercritical - 1st column 20 US Investment $ 09/kW € 2 010 1027
IEA 2011 Coal PC PC supercritical - 1st column 20 Japan Investment $ 09/kW € 2 010 1614
IEA 2011 Coal PC PC supercritical - 1st column 20 China Investment $ 09/kW € 2 010 513
MMD 2010 Coal PC NOAK - medium - UK Investment € 10/kW € 2 010 1968
Kaplan 2008 Coal PC Supercritical 600 MW USA Investment $ 2008/kW € 2 010 1706
AEO 2012 Coal PC Sucrubbed coal new - to be online in 2015 Investment $ 2010/kW € 2 010 2161
EMF 2012 Coal PC subcritical Investment € 2010/kW € 2 010 1200
EMF 2012 Coal PC Supercritical Investment € 2010/kW € 2 010 1300
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Figure 13 : Coal power plants – Investment cost in 2010 

 
Source : Techpol 

Expected technical progress on coal fired power plants is limited at least for conventional 
plants but not nul. Construction costs are lower for plans operating in supercritical conditions 
with an average close to 1400 €/kW in 2030 when very specific data are excluded. 

Figure 14 : Coal power plants – Investment cost in 2030 

 

Source : Techpol 

The introduction of carbon capture and storage technology strongly increases the 
construction cost of conventional coal power plants. Investment cost for coal power plants 
with carbon C&S stands between 1800 and 3500 $/kW. The average investment cost for 
CCS device is 2650 €/kW and the average incremental cost, 75 % of the cost of the 
reference plant. 
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Figure 15 : Conventional coal power plants with CCS 

 

Source : Techpol 

The efficiency of coal power plants has continuously increased since 20 years with the 
evolution of the technology from sub-critical to supercritical and ultra-supercritical operating 
mode. In 2010 the dispersion of the value for electrical efficiency is limited with an average at 
43% for supercritical plants without CCS and 33% for the plants with CCS.  

Figure 16  : Efficiency of coal power plants (w. CCS / w.o. CCS) 

 

Source : Techpol 

b.  Integrated coal gasification with combined cycle (IGCC) 
IGCC is expected to reach the market since 10 years but the technology is still immature with 
a limited number has already been built up at the industrial stage. Average investment cost in 
the database is close to 2150 €/kW but the most recent data are closer to 2500 €/kW (EIA 
2010, Mott MacDonald 2012 and OECD/IEA, 2011).  

Figure 17 : Coal Integrated Gasification Combined Cycle (IGCC) 
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Source : Techpol 

The importance of the cost decrease associated to technological learning is uncertain for 
IGCC so as the date of the market uptake. The average investment cost for IGCC in 2020 in 
the database is close to the ones in 2010.  

The introduction of CCS raises the cost but not as much as for conventional plants because 
of less expensive upstream capture technology. The average investment cost for IGCC with 
CCS device stands close to 3000 €/kW, the average incremental cost being 700-800 €/kW. 

Figure 18 : Coal IGCC with C&S 

 

Source : Techpol 

The figures for the efficiency of IGCC plants are very close to the ones for conventional 
power plants but with a greater dispersion. When extreme values are removed the average 
efficiency is 43% for IGCC and 33% for IGCC with CCS but the tendency for recent plants is 
slightly higher. 

Figure 19 : Efficiency of IGCC (w. and w/o. C&S) 
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Source : Techpol 

c.  Gas Turbine combined cycle 
In a great number of countries, gas turbine combined cycles are the reference technology for 
baseload electricity production. In spite of a large diffusion, the dispersion of construction 
costs is still quite large. Curiously, most recent estimates do not systematically provide lower 
4.  

The CCGT has reached technical maturity and foreseen technical progress is limited. The 
reference cost for GTCC is situated between 600 and 800 €/kW in 2010. According to the 
data collected in the database, the average cost for CCGT without CCS is close to 700 €/kW. 
The introduction of a CCS device significantly raise the cost which rises to 1200 €/kW. 

Figure 20 : Gas Turbine Combined Cycle – CCGT (w. and w/o CCS) 

 

Source : Techpol 
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Figure 21 : Efficiency of CCGT (w. and w/o CCS) 

 
Source : Techpol 

The average efficiency of CCGT is 56% (58% according to the more recent references) 
much higher than the efficiency of coal plants, even supercritical cycle. Similarly, the plant 
efficiency drops when CCS is included, with an average of 48%.  

Decentralised electric power plants 

A similar approach is used to estimate the performance of decentralised / renewable power 
plants. Only the main results are presented the following section focused on photovoltaic 
power plants, concentrating solar power plants, off- and on-shore wind power plants and 
biomass power plants. 

a. Photovoltaics 
The available data on photovoltaic power systems costs presents a rather heterogeneous 
picture even when large PV plants only are considered. 

Figure 22 : Investment costs for PV power plants (large systems) 

 
Source : Techpol 
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The average investment cost is close to 2400 €/kW, with much lower costs for the most 
recent references corresponding to 2012-13 (on the right of the graph). Unlike conventional 
(fossil) power plants, expected cost decrease is significant at least in the first period (2010-
2025).  

Figure 23 : Investment costs for PV power plants (large systems) 

 
Source : Techpol 

The average investment cost for small building integrated PV systems is much higher, close 
to 3400 €/kW but again the most recent references provide lower costs.  

Figures for load factors logically present great differences as they vary according to the 
location (average load factor for USA is almost the double of average value for Europe ; 26 
% and 13 % respectively). The huge dispersion of figures for fixed O&M costs may be 
explained by the inclusion of variable O&M for some sources. The gap remains nevertheless 
important between lower and higher values when all figures are expressed in €/kW.yr 
reflecting differences in system sizes and probably uncertainty regarding real operation and 
maintenance costs of operating systems. As a consequence it does not appear possible on 
the basis of available data to propose reference O&M reference costs for PV technology. 
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Figure 24 : Photovoltaic power plants - Investment costs 

 

Source : Techpol 

b. Wind power plants 
The average investment cost for onshore wind plants is close to 1300 €/kW, but the 
dispersion is still important in the recent period despite the high cumulated installed capacity. 
Unlike PV, the expected decrease of investment cost is rather limited even in the period 
2010-30 confirming the relative maturity of onshore wind technology. 

Figure 25 : Wind power plants (on –shore) 

 

Source : Techpol 
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Figure 26 : Wind power plants - Expected technical progress 

 

Source : Techpol 

The average estimated load factor is 25% but as for solar energy this figure requires fine 
adjustment taking account of national situations regarding the availability of wind resource 
and the potential already exploited. Load factor for offshore wind power plants are much 
higher (35-36%) but investment costs are at least twice as high as those of onshore wind 
plants.  

Figure 27 : Wind power plants (off –shore) 

. 

Source : Techpol 

The average investment cost for offshore wind power plants is close to 3000 €/kW but the 
most recent references provide higher costs. Unlike onshore wind, offshore power plants are 
still immature and the dispersion of the cost is logically rather high. It should be noted that if 
the references from 2011 are excluded, the average investment cost rises to 3400 €/kW. 
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Figure 28 : Wind power plants (off –shore) 

 

Source : Techpol 

As far as expected technological learning is concerned, the picture is rather contrasted. In 
2011, several references were providing an optimistic vision of the technology with low 
investment costs and high expected cost decrease. In the most recent sources, the 
investment cost is much higher and the technical progress is much lower.  

c. Hydro power plants  
Hydro power plants may also play a critical role the energy transition even if the still 
exploitable potential is, at least in some regions (Europe), rather limited compared to wind 
and solar power. Given the very site specific nature of hydro power plants, it is not easy to 
estimate average investment costs. Two main characteristic are worth noting anyway :  

− There is a marked difference in investment costs between small and large hydro 
power plants, the latter being 1000 €/kW more costly than the former 

− More important, the expected evolution of investment costs is in the opposite 
direction compared to most other energy technologies ; it does not mean that 
technological learning does not occur for hydro plants but associated benefits will be 
offset by the expected reinforcement of regulatory and environmental constraints.   
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Figure 29 : Large hydro power plants 

 
Source : Techpol 

Figure 30 : Small hydro power plants 

 

3.3. Comparison of the levelised costs of electricity  

In order to reinforce the quality of the data collected a complementary tool has been 
developed in the TECHPOL database. Its aim is to facilitate the comparison of power 
production costs within an harmonised framework. This framework provides a standardized 
calculation procedure for levelised cost of electricity. It allows visualising the combined 
effects of different factors that may influence production cost and facilitates a more accurate 
assumption of the future evolution of key parameters (such as investment cost, efficiency, 
variable or fixed O&M). 

A comparison of LCOE is given below for illustration. The results refer to the reference 
values obtained from the database for generic technologies for a European country with the 
following assumptions :  
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− Discount rate : 5% 
− Carbon tax (2015 : 10€/tCO2 ; 2020 : 50€/tCO2 ; 2050 : 300€/tCO2) 
− Energy price increase : 7 $/MBtU for natural gas in 2015, 11 $/MBtU in 2050  

In 2015, the difference is still large between mature fossil power plants (including nuclear) 
and renewable sources power plants except large hydro. 

Figure 31 : LCOE 2015 

 

Source : Techpol 

In 2030, the picture is somewhat different ; as a result of the introduction of a (small) carbon 
tax, the production costs of conventional fossil power plants (without CO2 capture) exceed 
150 €/MWh. 
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Figure 32 : Production costs – centralised power plants 

 

Source : Techpol 

3.4. Database of reference costs / performance 

The methodology described above has been used to provide reference values for the main 
variables that are used to calculate the levelised cost of electricity from the key power 
technologies. The values for investment costs have been provided for the present situation 
(year 2013-14) which may explain some differences with the figures obtained in the above 
pages. 

Concerning the future investment costs, the figures have been constructed using the same 
methodology based on learning curves. The learning rates are presented in the following 
table: we have voluntarily restricted the variation of the learning rate to two basic values, 
10% and 15%, for respectively, mature and still evolving technologies. Some exceptions may 
exist, with a value of 20% for ocean technologies which may be considered as emerging 
technologies and wind power which is not mature (at least for offshore) but present a limited 
historic learning rate. The market growth for each technology has been estimated using the 
annual average growth rates observed in Energy Technology Perspectives 2012 (2 DS 
base).  

 

  

0
20
40
60
80

100
120
140
160
180

Levelised cost of electricity - 2030 (€/MWh)



30 
 
 

Figure 33 : Learning rates used for future investment costs 

 

Figure 34 : Solar energy technologies 

 

  

Technology Learning R. Technology Learning R.
Pulverised coal -  w/oCCS 10% PV large 15%
Pulverised coal - w CCS 15% PV small 15%
IGCC -  w/oCCS 10% CSP 10%
IGCC  - w CCS 15% Wind onshore 10%
Gas turbine -  w/oCCS 10% Wind offshore 10%
Gas turbine - w CCS 15% Ocean 20%
Oil 10% Nuclear - 3rd gen 10%

Nuclear - 2tndgen 10%
Biomass and waste 10%
Hydro large 10%
Hydro small 10%

Sector Technology Details Variable Units 2014 2025 2050
Power prod PV large large systems Overnight cost €2010/kW 1500 900 700
Power prod PV large large systems Technical l ifetime years 25 30 30
Power prod PV large large systems Construction time years 2 2 2
Power prod PV large large systems Fixed O&M €/kW 20 20 20
Power prod PV large large systems Variable O&M €/MWh 0 0 0
Power prod PV large large systems Load factor % 12 13 13
Power prod PV large large systems Electrical efficiency %
Power prod PV large large systems Thermal efficiency %
Power prod PV large large systems Decommission share % 10 10 10
Power prod PV small small integr. systems Overnight cost €2010/kW 2500 1300 800
Power prod PV small small integr. systems Technical l ifetime years 25 25 30
Power prod PV small small integr. systems Construction time years 2 2 2
Power prod PV small small integr. systems Fixed O&M €/kW 30 25 25
Power prod PV small small integr. systems Variable O&M €/MWh 0
Power prod PV small small integr. systems Load factor % 13 14 14
Power prod PV small small integr. systems Electrical efficiency %
Power prod PV small small integr. systems Thermal efficiency %
Power prod PV small small integr. systems Decommission share % 10 10 10
Power prod CSP incl. Thermal storage Overnight cost €2010/kW 6000 5000 4000
Power prod CSP incl. Thermal storage Technical l ifetime years 20 25 25
Power prod CSP incl. Thermal storage Construction time years 3 3 3
Power prod CSP incl. Thermal storage Fixed O&M €/kW 60 45 40
Power prod CSP incl. Thermal storage Variable O&M €/MWh
Power prod CSP incl. Thermal storage Load factor % 35 40 40
Power prod CSP incl. Thermal storage Electrical efficiency %
Power prod CSP incl. Thermal storage Thermal efficiency %
Power prod CSP incl. Thermal storage Decommission share % 10 10 10
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Figure 35 : Solar energy technologies 

 

Figure 36 : Nuclear energy technologies 

 

  

Power prod Wind onshore Overnight cost €2010/kW 1300 1100 1100
Power prod Wind onshore Technical l ifetime years 20 20 20
Power prod Wind onshore Construction time years 2 2 2
Power prod Wind onshore Fixed O&M €/kW 40 35 30
Power prod Wind onshore Variable O&M €/MWh
Power prod Wind onshore Load factor % 24 26 26
Power prod Wind onshore Electrical efficiency %
Power prod Wind onshore Thermal efficiency %
Power prod Wind onshore Decommission share % 10 10 10
Power prod Wind offshore Overnight cost €2010/kW 3500 3000 2700
Power prod Wind offshore Technical l ifetime years 15 20 20
Power prod Wind offshore Construction time years 2 2 2
Power prod Wind offshore Fixed O&M €/kW 100 90 90
Power prod Wind offshore Variable O&M €/MWh
Power prod Wind offshore Load factor % 35 36 37
Power prod Wind offshore Electrical efficiency %
Power prod Wind offshore Thermal efficiency %
Power prod Wind offshore Decommission share % 10 10 10
Power prod Ocean Marine turbines Overnight cost €2010/kW 5000 3000
Power prod Ocean Marine turbines Technical l ifetime years 20 20
Power prod Ocean Marine turbines Construction time years 2 2
Power prod Ocean Marine turbines Fixed O&M €/kW 100 80
Power prod Ocean Marine turbines Variable O&M €/MWh
Power prod Ocean Marine turbines Load factor % 40 40
Power prod Ocean Marine turbines Electrical efficiency %
Power prod Ocean Marine turbines Thermal efficiency %
Power prod Ocean Marine turbines Decommission share % 10 10

Power prod Nuclear - 3rd gen EPR type Overnight cost €2010/kW 5000 4250
Power prod Nuclear - 3rd gen EPR type Technical l ifetime years 50 50
Power prod Nuclear - 3rd gen EPR type Construction time years 6 6
Power prod Nuclear - 3rd gen EPR type Fixed O&M €/kW 60 60
Power prod Nuclear - 3rd gen EPR type Variable O&M €/MWh 3 3
Power prod Nuclear - 3rd gen EPR type Load factor % 85 85
Power prod Nuclear - 3rd gen EPR type Electrical efficiency % 35 35
Power prod Nuclear - 3rd gen EPR type Thermal efficiency %
Power prod Nuclear - 3rd gen EPR type Decommission share % 25 25
Power prod Nuclear - GenII PWR type Overnight cost €2010/kW 3000 3000 3000
Power prod Nuclear - GenII PWR type Technical l ifetime years 40 40 40
Power prod Nuclear - GenII PWR type Construction time years 5 5 5
Power prod Nuclear - GenII PWR type Fixed O&M €/kW 70 75 80
Power prod Nuclear - GenII PWR type Variable O&M €/MWh 3 3,5 4
Power prod Nuclear - GenII PWR type Load factor % 85 85 85
Power prod Nuclear - GenII PWR type Electrical efficiency % 35 35 35
Power prod Nuclear - GenII PWR type Thermal efficiency %
Power prod Nuclear - GenII PWR type Decommission share % 25 25 25
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Figure 37 : Biomass / hydro energy technologies 

 

  

Power prod Biomass and waste Steam turbine Overnight cost €2010/kW 2500 2300 2200
Power prod Biomass and waste Steam turbine Technical l ifetime years 20 20 20
Power prod Biomass and waste Steam turbine Construction time years 2,5 2,5 2,5
Power prod Biomass and waste Steam turbine Fixed O&M €/kW 100 100 100
Power prod Biomass and waste Steam turbine Variable O&M €/MWh 4 4 4
Power prod Biomass and waste Steam turbine Load factor % 85 85 85
Power prod Biomass and waste Steam turbine Electrical efficiency % 30 32 35
Power prod Biomass and waste Steam turbine Thermal efficiency %
Power prod Biomass and waste Steam turbine Decommission share % 10 10 10
Power prod Biomass and waste CHP Overnight cost €2010/kW 3750 3750 3750
Power prod Biomass and waste CHP Technical l ifetime years 20 20 20
Power prod Biomass and waste CHP Construction time years 2,5 2,5 2,5
Power prod Biomass and waste CHP Fixed O&M €/kW 100 100 100
Power prod Biomass and waste CHP Variable O&M €/MWh 4 4 4
Power prod Biomass and waste CHP Load factor % 85 85 85
Power prod Biomass and waste CHP Electrical efficiency % 25 25 25
Power prod Biomass and waste CHP Thermal efficiency % 65 65 65
Power prod Biomass and waste CHP Decommission share % 10 10 10
Power prod Hydro large Overnight cost €2010/kW 2000 2000 2000
Power prod Hydro large Technical l ifetime years 50 50 50
Power prod Hydro large Construction time years 5 5 5
Power prod Hydro large Fixed O&M €/kW 50 50 50
Power prod Hydro large Variable O&M €/MWh
Power prod Hydro large Load factor % 40 40 40
Power prod Hydro large Electrical efficiency %
Power prod Hydro large Thermal efficiency %
Power prod Hydro large Decommission share % 10 10 10
Power prod Hydro small Overnight cost €2010/kW 3000 3000 3000
Power prod Hydro small Technical l ifetime 40 40 40
Power prod Hydro small Construction time 2 2 2
Power prod Hydro small Fixed O&M 60 60 60
Power prod Hydro small Variable O&M
Power prod Hydro small Load factor 35 35 35
Power prod Hydro small Electrical efficiency
Power prod Hydro small Thermal efficiency
Power prod Hydro small Decommission share 10 10 10
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Figure 38 : Fossil fuel energy technologies 

 

Power prod Pulverised coal -  w/oCCS Supercritical -  w/oCCS Overnight cost €2010/kW 1600 1500 1500
Power prod Pulverised coal -  w/oCCS Supercritical -  w/oCCS Technical l ifetime years 40 40 40
Power prod Pulverised coal -  w/oCCS Supercritical -  w/oCCS Construction time years 3 3 3
Power prod Pulverised coal -  w/oCCS Supercritical -  w/oCCS Fixed O&M €/kW 30 30 30
Power prod Pulverised coal -  w/oCCS Supercritical -  w/oCCS Variable O&M €/MWh 2 2 2
Power prod Pulverised coal -  w/oCCS Supercritical -  w/oCCS Load factor % 85 85 85
Power prod Pulverised coal -  w/oCCS Supercritical -  w/oCCS Electrical efficiency % 45 46 48
Power prod Pulverised coal -  w/oCCS Supercritical -  w/oCCS Thermal efficiency %
Power prod Pulverised coal -  w/oCCS Supercritical -  w/oCCS Decommission share % 10 10 10
Power prod Pulverised coal - w CCS Supercritical - w CCS Overnight cost €2010/kW 2700 2300
Power prod Pulverised coal - w CCS Supercritical - w CCS Technical l ifetime years 40 40
Power prod Pulverised coal - w CCS Supercritical - w CCS Construction time years 4 4
Power prod Pulverised coal - w CCS Supercritical - w CCS Fixed O&M €/kW 60 60
Power prod Pulverised coal - w CCS Supercritical - w CCS Variable O&M €/MWh 4 4
Power prod Pulverised coal - w CCS Supercritical - w CCS Load factor % 85 85
Power prod Pulverised coal - w CCS Supercritical - w CCS Electrical efficiency % 35 39
Power prod Pulverised coal - w CCS Supercritical - w CCS Thermal efficiency %
Power prod Pulverised coal - w CCS Supercritical - w CCS Decommission share % 10 10
Power prod IGCC -  w/oCCS  w/oCCS Overnight cost €2010/kW 2500 2400 2300
Power prod IGCC -  w/oCCS  w/oCCS Technical l ifetime years 40 40 40
Power prod IGCC -  w/oCCS  w/oCCS Construction time years 3 3 3
Power prod IGCC -  w/oCCS  w/oCCS Fixed O&M €/kW 50 50 50
Power prod IGCC -  w/oCCS  w/oCCS Variable O&M €/MWh 4 4 4
Power prod IGCC -  w/oCCS  w/oCCS Load factor % 85 85 85
Power prod IGCC -  w/oCCS  w/oCCS Electrical efficiency % 45 46 48
Power prod IGCC -  w/oCCS  w/oCCS Thermal efficiency %
Power prod IGCC -  w/oCCS  w/oCCS Decommission share % 10 10 10
Power prod IGCC  - w CCS w CCS Overnight cost €2010/kW 3100 2600
Power prod IGCC  - w CCS w CCS Technical l ifetime years 40 40
Power prod IGCC  - w CCS w CCS Construction time years 3 3
Power prod IGCC  - w CCS w CCS Fixed O&M €/kW 70 70
Power prod IGCC  - w CCS w CCS Variable O&M €/MWh 5 5
Power prod IGCC  - w CCS w CCS Load factor % 85 85
Power prod IGCC  - w CCS w CCS Electrical efficiency % 39,5 42
Power prod IGCC  - w CCS w CCS Thermal efficiency %
Power prod IGCC  - w CCS w CCS Decommission share % 10 10
Power prod Gas turbine -  w/oCCS  w/oCCS Overnight cost €2010/kW 750 650 650
Power prod Gas turbine -  w/oCCS  w/oCCS Technical l ifetime years 25 25 25
Power prod Gas turbine -  w/oCCS  w/oCCS Construction time years 2,5 2,5 2,5
Power prod Gas turbine -  w/oCCS  w/oCCS Fixed O&M €/kW 20 20 20
Power prod Gas turbine -  w/oCCS  w/oCCS Variable O&M €/MWh 2 2 2
Power prod Gas turbine -  w/oCCS  w/oCCS Load factor % 85 85 85
Power prod Gas turbine -  w/oCCS  w/oCCS Electrical efficiency % 58 59 60
Power prod Gas turbine -  w/oCCS  w/oCCS Thermal efficiency %
Power prod Gas turbine -  w/oCCS  w/oCCS Decommission share % 10 10 10
Power prod Gas turbine - w CCS w CCS Overnight cost €2010/kW 1200 1000
Power prod Gas turbine - w CCS w CCS Technical l ifetime years 25 25
Power prod Gas turbine - w CCS w CCS Construction time years 3 3
Power prod Gas turbine - w CCS w CCS Fixed O&M €/kW 40 40
Power prod Gas turbine - w CCS w CCS Variable O&M €/MWh 4 4
Power prod Gas turbine - w CCS w CCS Load factor % 85 85
Power prod Gas turbine - w CCS w CCS Electrical efficiency % 48 52
Power prod Gas turbine - w CCS w CCS Thermal efficiency %
Power prod Gas turbine - w CCS w CCS Decommission share % 10 10
Power prod Oil Steam turbine Overnight cost €2010/kW 800 800 800
Power prod Oil Steam turbine Technical l ifetime years 30 30 30
Power prod Oil Steam turbine Construction time years 2,5 2,5 2,5
Power prod Oil Steam turbine Fixed O&M €/kW 30 30 30
Power prod Oil Steam turbine Variable O&M €/MWh 3 3 3
Power prod Oil Steam turbine Load factor % 85 85 85
Power prod Oil Steam turbine Electrical efficiency % 39 39 39
Power prod Oil Steam turbine Thermal efficiency %
Power prod Oil Steam turbine Decommission share % 10 10 10
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4. ENERGY TECHNOLOGIES PUBLIC R/D DATABASE 

In the following tables, the global public energy R/D budget has been recalculated for the key 
energy technologies used in the POLES model. The calculation is based on the OECD 
Energy R/D statistics (IEA Energy Technologies RD&D Statistics) which provides the energy 
R/D annual budgets for 28 countries and the European Union (expressed in euros 2012).  

The national tables have been corrected for missing years in order not to introduce artificial 
breaking in the aggregate series and then summed up. The result is a table of year by year 
and cumulative public energy R/D according to the IEA main categories of technologies.  

These data have then been disaggregated into the conventional and new and renewable 
POLES technologies using a decomposition matrix. The public energy R/D time-series are 
produced for each technology. Cumulative research by technology is then calculated from 
yearly spendings starting from 1980 without any hypothesis about knowledge losses (no 
scraping rate for the stock of knowledge). 

 

Figure 39 : Decomposition matrix from IEA categories to POLES technologies (extract) 

 

 

  

HRR HLK HPS SHY NUC NND LCT CCT PFC ICG PSS ICS OCT OGC GCT GGT GGC
+CCS +CCS

214 Oil and gas combustion 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 10% 20% 10% 20% 50%
216 Other oil and gas 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 10% 20% 10% 20% 50%
222 Coal combustion (incl. IGCC) 0% 0% 0% 0% 0% 0% 10% 10% 60% 30% 0% 0% 0% 0% 0% 0% 0%
223 Coal conversion (excl. IGCC) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
224 Other coal 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
231 CO2 capture/separation 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 50% 50% 0% 0% 0% 0% 0%
312 PV 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
313 Solar thermal power 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
321 Onshore wind 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
322 Offshore wind 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
33 Ocean energy 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
342 Production of solid biofuels 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3431 Thermochemical 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
35 Geothermal energy 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
361 Large hydro (>) 100% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
362 Small hydro (< 10MW) 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
41 Nuclear fission 0% 0% 0% 0% 90% 10% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
415 Nuclear breeder 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
51 Hydrogen 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
52 Fuel cells 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
61 Electric power conversion 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
622 Grid, control and integration 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
631 Electrical storage 0% 0% 20% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
632 Thermal energy storage 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Figure 40 : Energy public R/D -  IEA data 

 

Source : IEA Energy Technologies RD&D Statistics 

As an illustration, the cumulative public R/D series are provided in the following figures for 3 
different families of technology. For the fossil fuel power plants the trajectory is linear since 
the end of the 70s ; for the renewable energy plants, cumulated R/D budgets show a 
sustained growth (particularly for PV) since 1980 with a marked increase after 2005 ; and for 
the emerging technologies (fuel cells and biomass gasification turbines) the increase is also 
impressive since 2000-05.    

 

Figure 41 : Cumulative public R/D – fossil power plants 
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Figure 42 : Cumulative public R/D – renewable power plants 

 

 

Figure 43 : Cumulative public R/D – emerging technologies 
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Figure 44 : Cumulative public energy R/D (1980-2011)  

 

 

 

    >1980 HRR HLK HPS SHY NUC NND LCT CCT PFC ICG
1980 0,0 0,0 0,0 0,0 4248,9 3592,1 37,1 37,1 222,8 111,4
1981 0,0 0,0 0,0 0,0 8644,0 7138,8 80,0 80,0 479,7 239,9
1982 0,0 0,0 0,0 0,0 13204,5 10764,0 112,9 112,9 677,5 338,8
1983 0,0 0,0 0,0 0,0 17375,9 13691,3 138,8 138,8 832,5 416,3
1984 0,0 0,0 0,0 0,0 21595,0 16486,9 163,6 163,6 981,7 490,9
1985 0,0 0,0 0,0 0,2 26089,0 19133,2 192,8 192,8 1157,0 578,5
1986 0,0 0,0 0,0 0,2 30243,2 21408,8 219,8 219,8 1318,7 659,4
1987 0,0 0,0 0,0 0,6 33704,0 22960,2 239,7 239,7 1438,0 719,0
1988 0,0 0,0 0,0 0,8 36454,6 24464,5 261,7 261,7 1570,1 785,1
1989 0,0 0,0 0,0 1,2 39814,1 25821,3 282,1 282,1 1692,6 846,3
1990 0,0 0,0 0,0 1,6 42902,2 26989,2 305,1 305,1 1830,3 915,2
1991 7,2 7,2 7,2 2,2 46047,1 28076,0 329,7 329,7 1978,2 989,1
1992 19,8 19,8 19,8 12,3 48704,2 28996,2 341,6 341,6 2049,5 1024,8
1993 31,6 31,6 31,6 14,1 51321,5 29872,2 354,7 354,7 2128,3 1064,1
1994 45,6 45,6 45,6 16,4 53922,9 30669,5 402,5 402,5 2415,0 1207,5
1995 61,7 61,7 61,7 18,8 56773,4 31347,4 427,2 427,2 2563,4 1281,7
1996 73,5 73,5 73,5 22,8 59589,9 31993,5 459,0 459,0 2754,1 1377,1
1997 83,5 83,5 83,5 27,6 62329,2 32578,5 474,6 474,6 2847,6 1423,8
1998 91,7 91,7 91,7 32,1 65008,2 33132,0 487,8 487,8 2927,1 1463,5
1999 100,7 100,7 100,7 41,6 67703,2 33668,3 502,1 502,1 3012,6 1506,3
2000 114,1 114,1 114,1 49,0 70296,6 34332,8 512,6 512,6 3075,6 1537,8
2001 124,3 124,3 124,3 58,4 72792,5 34908,3 534,3 534,3 3205,8 1602,9
2002 137,2 137,2 137,2 75,2 75927,9 35403,3 561,1 561,1 3366,8 1683,4
2003 148,5 148,5 148,5 94,2 79049,2 35903,1 588,2 588,2 3529,1 1764,5
2004 158,8 158,8 158,8 104,5 81963,0 36365,1 620,6 620,6 3723,6 1861,8
2005 167,5 167,5 167,5 113,1 85281,0 36884,0 630,1 630,1 3780,7 1890,4
2006 173,0 173,0 173,0 119,2 88278,0 37452,4 642,6 642,6 3855,4 1927,7
2007 179,1 179,1 179,1 127,7 91434,1 38046,9 653,1 653,1 3918,9 1959,4
2008 191,1 191,1 192,7 136,6 94505,2 38630,4 693,3 693,3 4159,6 2079,8
2009 230,9 230,9 284,2 176,1 97405,0 39222,1 714,3 714,3 4285,7 2142,9
2010 275,4 275,4 359,8 187,0 100239,2 39887,4 732,9 732,9 4397,1 2198,6
2011 317,3 317,3 428,4 210,4 102488,0 40689,7 757,6 757,6 4545,8 2272,9
2012 353,3 353,3 491,2 230,4 104769,6 41503,6 786,4 786,4 4718,7 2359,3

PSS ICS OCT OGC GCT GGT GGC GGSC CHP GEO OCE
0,0 0,0 20,6 41,1 20,6 41,1 102,8 0,0 55,1 428,8 129,8
0,0 0,0 39,0 78,1 39,0 78,1 195,2 0,0 99,1 863,4 229,5
0,0 0,0 57,5 115,0 57,5 115,0 287,6 0,0 128,6 1125,3 293,1
0,0 0,0 81,4 162,8 81,4 162,8 407,0 0,0 166,0 1354,4 335,1
0,0 0,0 102,5 205,0 102,5 205,0 512,5 0,0 197,7 1518,7 353,8
0,0 0,0 126,8 253,6 126,8 253,6 633,9 0,0 234,5 1645,0 368,4
0,0 0,0 154,2 308,4 154,2 308,4 771,1 0,0 269,1 1769,0 381,6
0,0 0,0 181,3 362,5 181,3 362,5 906,4 0,0 308,9 1873,9 397,4
0,0 0,0 202,1 404,2 202,1 404,2 1010,5 0,0 364,4 1974,7 410,3
0,0 0,0 221,0 442,0 221,0 442,0 1105,0 0,0 426,0 2071,0 422,1
0,0 0,0 235,2 470,4 235,2 470,4 1175,9 0,0 471,1 2164,4 436,0
0,0 0,0 248,9 497,8 248,9 497,8 1244,4 0,0 525,6 2266,8 448,9
0,0 0,0 272,6 545,2 272,6 545,2 1363,0 0,0 570,4 2356,3 452,9
0,0 0,0 290,1 580,2 290,1 580,2 1450,5 0,0 607,4 2438,8 457,9
0,0 0,0 302,2 604,4 302,2 604,4 1510,9 0,0 661,4 2504,8 462,3
0,0 0,0 317,8 635,6 317,8 635,6 1589,0 0,0 709,9 2587,9 464,9
0,0 0,0 327,6 655,2 327,6 655,2 1638,0 0,0 759,2 2661,2 467,3
0,0 0,0 346,6 693,2 346,6 693,2 1732,9 0,0 810,8 2734,4 470,0
0,0 0,0 354,0 708,1 354,0 708,1 1770,1 0,0 871,7 2805,1 482,4
0,0 0,0 372,0 743,9 372,0 743,9 1859,8 0,0 925,5 2876,6 490,3
0,0 0,0 381,9 763,9 381,9 763,9 1909,6 0,0 998,5 2930,9 498,7
0,0 0,0 400,5 801,0 400,5 801,0 2002,6 0,0 1080,8 3000,7 510,1
0,2 0,2 432,7 865,5 432,7 865,5 2163,7 0,2 1134,8 3070,2 514,8
0,6 0,6 467,2 934,4 467,2 934,4 2335,9 0,6 1188,4 3129,9 519,5

31,4 31,4 488,0 976,0 488,0 976,0 2440,0 31,4 1230,6 3173,1 529,5
62,0 62,0 506,3 1012,5 506,3 1012,5 2531,4 62,0 1258,8 3214,7 536,9

117,7 117,7 527,9 1055,9 527,9 1055,9 2639,7 117,7 1286,0 3255,7 551,2
183,8 183,8 554,7 1109,3 554,7 1109,3 2773,3 183,8 1312,4 3290,8 567,3
261,9 261,9 580,7 1161,4 580,7 1161,4 2903,4 261,9 1340,5 3338,6 595,4
462,3 462,3 602,3 1204,5 602,3 1204,5 3011,3 462,3 1353,7 3711,5 657,0
645,4 645,4 620,3 1240,5 620,3 1240,5 3101,3 645,4 1364,6 3799,9 758,8
836,6 836,6 635,1 1270,1 635,1 1270,1 3175,4 836,6 1374,8 3892,1 833,9

1059,1 1059,1 652,3 1304,6 652,3 1304,6 3261,5 1059,1 1385,0 3971,2 898,2



38 
 
 

 

Source : IEA statistics plus TECHPOL adapt.  

 

WND WNO SPP SPPS CPV DPV BTE BGT BCS GFC HFC
177,9 15,8 422,1 422,1 390,1 390,1 0,0 44,4 0,0 0,0 0,0
411,6 36,6 715,5 715,5 788,5 788,5 0,0 101,3 0,0 0,0 0,0
561,1 49,9 888,7 888,7 1098,4 1098,4 0,0 151,1 0,0 0,0 0,0
683,4 60,8 1013,9 1013,9 1328,6 1328,6 0,0 213,6 0,0 0,0 0,0
815,7 72,5 1103,5 1103,5 1683,5 1683,5 0,0 271,3 0,0 0,0 0,0
964,4 85,8 1179,3 1179,3 1947,7 1947,7 0,0 320,6 0,0 0,0 0,0

1054,6 93,8 1228,0 1228,0 2156,6 2156,6 0,0 359,7 0,0 0,0 0,0
1136,7 101,1 1294,8 1294,8 2351,3 2351,3 0,0 395,9 0,0 0,0 0,0
1211,3 107,7 1354,8 1354,8 2557,8 2557,8 0,0 433,3 0,0 0,0 0,0
1297,5 115,4 1387,6 1387,6 2765,2 2765,2 0,0 462,5 0,0 0,0 0,0
1397,6 124,3 1438,0 1438,0 2977,2 2977,2 0,0 487,8 0,0 0,0 0,0
1492,9 132,8 1486,4 1486,4 3209,9 3209,9 0,0 519,8 0,0 0,0 0,0
1561,6 138,9 1542,5 1542,5 3443,9 3443,9 0,0 546,7 0,0 0,0 0,0
1643,1 146,1 1607,6 1607,6 3699,0 3699,0 0,0 572,0 0,0 0,0 0,0
1730,5 153,9 1671,2 1671,2 3938,6 3938,6 0,0 611,8 0,0 0,0 0,0
1843,0 163,9 1727,3 1727,3 4198,9 4198,9 0,0 653,6 0,0 0,0 0,0
1951,9 173,6 1776,4 1776,4 4434,4 4434,4 0,0 691,2 0,0 0,0 0,0
2048,3 182,1 1824,8 1824,8 4674,9 4674,9 0,0 729,8 0,0 0,0 0,0
2148,8 191,1 1859,1 1859,1 4940,7 4940,7 0,0 779,9 0,0 0,0 0,0
2246,3 199,7 1897,0 1897,0 5210,7 5210,7 0,0 827,1 0,0 0,0 0,0
2333,7 207,5 1920,5 1920,5 5508,6 5508,6 0,0 871,1 0,0 0,0 0,0
2437,3 216,7 1970,1 1970,1 5790,0 5790,0 0,0 923,4 0,0 0,0 0,0
2535,1 225,4 2050,3 2050,3 6081,2 6081,2 0,2 980,8 0,2 4,6 4,6
2641,6 234,9 2125,3 2125,3 6352,8 6352,8 1,1 1049,2 0,6 8,8 8,8
2739,0 243,6 2200,6 2200,6 6678,6 6678,6 38,3 1164,6 31,4 134,5 134,5
2866,6 254,9 2273,9 2273,9 7014,1 7014,1 78,7 1285,0 62,0 342,7 342,7
2993,6 266,2 2327,3 2327,3 7366,0 7366,0 101,0 1495,7 117,7 578,6 578,6
3124,2 277,8 2403,1 2403,1 7699,9 7699,9 128,7 1744,5 183,8 821,7 821,7
3236,7 287,8 2503,5 2503,5 8083,1 8083,1 157,6 1909,2 261,9 1078,3 1078,3
3459,9 299,9 2682,6 2682,7 8620,8 8620,8 213,3 2153,4 462,3 1302,7 1302,7
3834,4 335,2 2804,7 2805,8 9222,3 9222,3 287,0 2545,4 645,4 1509,8 1509,8
4160,7 367,1 2990,5 2992,1 9882,5 9882,5 320,5 2825,0 836,6 1682,7 1682,7
4484,7 398,8 3199,2 3201,4 10637,2 10637,2 349,2 3064,5 1059,1 1849,4 1849,4
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1 Introduction

The Learning Curve is an empirical relation between cumulated installed capac-
ity of capital that embodies certain technology (e.g. installed capacity of wind
farms or PV panels) and instalation costs of this technology (e.g. cost of MW
produced with a PV panel). It has been observed that for some technologies
(most notably for Photovoltais panels) the relation is log linear and the slope
of the implied curve is relatively stable over time. Since this has been realized,
the learning curve has been frequently used in the IAM to predict reductions in
instalation costs.

In the literature the Learning Curve is often advocated for its simplicity. It
is argued that, as long as an aim is to predict change in instalation costs rather
than to explain its fall, the reduced form relation is all that is needed. The view
is challenged in this paper. We state under what conditions the reduced form
OLS estimation of the learning rate can be utilized within integrated asessment
models in the meaningful way. Subsequently we argue that this conditions are
highly unlikely to hold. Therefore we propose a new estimator of the learn-
ing rate which produce results that are consistent with IAM use under milder
assumptions.

The Modelers can safely use the reduced form learning rate only in one in-
stance: if they use the learning curve o�-line, that is if they form the prediction
on the cumulated capacity using the IAM and then use the Learning Curve to
forecast instalation costs. The instalation costs cannot be inputed back into
an IAM. If they are, the IAM will produce meaningless results, most likely
overstating the instalation costs drop and underestimating climate change miti-
gation costs. The short intuition for this is that the reduced form learning curve

∗Fondazione Eni Enrico Mattei, Palazzo delle Stelline, Corso Magenta 63, 20123 Milan,
Italy
†Fondazione Eni Enrico Mattei and CMCC
‡Fondazione Eni Enrico Mattei and CMCC
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already include the feedback e�ect that instalation costs have on the installed
capacity. If modelers use the Learning Curve equation to predict instalation
costs and then feed it back to their IAM in order to compute new cumulated
capacity, they will count the same e�ect twice. This logic is formalized in the
simple framework below.

2 Simple Embodied Technology Model

To understand the economic forces that shape the Learning Curve we need to
model the demand and supply curves for the capacity market. In this section
we present a simple, yet reasonably general dynamic model that predicts how
demand for capacity depends on the technology instalation costs. The model
can refer to any technology, however for the ease of exposition we will sometimes
refer to the wind turbines.

Let k denote the cumulated capacity of wind turbines, I - �ow of new capac-
ity in one period, c - a turbine instalation cost, y - wind electricity production
and , p - its price. The objective function of a �rm producing electricity from
wind (or a central planner) is:

V (C,K) = max
I
{PY (K)− CI + βV (C ′,K ′)} (1)

subject to K ′ = (1− δ)K + I or simply

V (C,K) = max
I
{PY (K)− C (K ′ − (1− δ)K) + βV (C ′,K ′)} (2)

The �rst order condition to �rm's optimization problem is

βVK′ (C
′,K ′) = C

Using the envelope theorem we can determine the derivative of the objective
function with respect to installed capacity:

VK = PY ′ (K) + (1− δ)C

combining the two results above:

βPY ′ (K ′) + β (1− δ)C = C

Suppose that electricity is produced according to a simple production func-
tion with decreasing returns to scale1: Y = Kα. Then

K =

(
Pαβ

(1− β (1− δ))C

) 1
1−α

If we denote the logs of the variables with the lower case,

k = − 1

1− α
c+

1

1− α
p+ constant

1Note that, as long as the �rm takes the instalation costs as given, the condition of the
decreasing returns to scale is a necessary condition for an equilibrium to exist.
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3 What does OLS Learning Rate Capture?

In this section we present a general log-linear model which describes the inter-
dependence of instalation costs and cumulated capacity.

Let r be the vector of factors that determine technology instalation cost. It
could include public and private R&D, experience with the use of technology -
usually proxied with cumulated installed capacity or material prices. We will
call the elements in r the direct drivers of instalation cost. These direct drivers
depend themselves on other factors, such as price of energy, policies but also
luck of scientists, menagerial skills or demand for materials by other sectors.
We will distinguish between two groups of factors: the factors that are included
in the integrated assessment models (e.g. energy price, perhaps also policy) and
factors that are not included in the IAMs. The former are gathered in a vector
z while the latter compose vector t. In the linear world, each direct driver of
instalation cost, ri is a linear function of elements in z and t. Thus,

c =
∑
i

ri (z, t) =
∑
i

∑
j

δijzj +
∑
k

νiktk


The reduced form of j is therefore

c =
∑
j

δjzj +
∑
k

νktk

where δj =
∑
i δij and νk =

∑
i νik

Although the result holds for a multiple elements in z and t the key intuition
behind the problem that we want to portray can be exposed if we assume that
there is only one factor in z (labelled z) and one factor in t, labelled t. Then
the above simpli�es to

c = δz + νt (3)

The coe�cient ν can be normalized to unity. Notice that the expression is
a reduced form of the supply curve and the coe�cient δ is a parameter that we
ultimately look for: the modellers need to know how change in the energy price
or a new tax in their model will a�ect instalation costs of renewable technology.

The demand for the technology has been derived in the previous section. We
assume that price of electricity is one of the factors that are included in IAMs.
In this simpli�ed framework, we have only one factor, thus we let z = p. In
addition, to account for the potential misspeci�cation of the model and factors
that we do not a�ect, but can potentially shift the demand curve (such as
�nancial constraints) we add the error term, ε:

k = ωc+ γz + ε (4)
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3.1 The OLS estimate of the learning rate

The regression usually used to estimate the learning rate takes the form

c = αk + η (5)

The OLS estimator of the learning rate is then

α̂ =
Cov (c, k)

V ar (k)

Using equations (3) and (4), we can �nd that the reduced form relation
between c and k is

c =
δ

γ + δω
k − δ

γ + δω
ε+

1

1 + δω/γ
t

The simple calculations shows then that

α̂ =
Cov (c, k)

V ar (k)
=

=
δ

γ + δω

(
1− V ar (ε)

V ar (k)
+ γω/δ

V ar (t)

V ar (k)
+ γ

Cov (z, t)

V ar (k)

)
To save space, we can use Γ = − V ar(ε)

V ar(k) + δω/γ V ar(t)V ar(k) + γ Cov(z,t)
V ar(k)

Suppose now that an IAM tries to explore what are the implication of an
increase in z by one unit. The model includes two equations: demand for the
technology - i.e. equation (4) that we restate here for convinience:

k = ωc+ γz + ε

and the estimated learning curve:

c =
δ

γ + δω
(1 + Γ) k

Solving these two models simultaneously implies

c =
(1 + Γ)

1− δω/γΓ
δz +

δ (1 + Γ)

γ − δωΓ
ε

The model predicts that a unit increase in z will increase (or decrease)

instalation cost by a factor (1+Γ)
1−δω/γΓδ. This prediction is therefore meaningful

only if Γ = 0, that is only if V ar (ε) = 0 and V ar (t) = 0. It is important to
realize that the predictions of IAM are not true on average. If there are any
factors that does in�uence instalation costs, but are not explicitely included in
the model (such as material costs, or spillovers), then V ar (t) > 0, Γ > 0 and
the learning rate is consistently over estimated.
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3.2 A Step Towards Consistency: Two Stage estimator of

the Learning Rate.

Suppose that in the regression (5) instead of using observed data on cumulative
installed capacity we use its projections based on explonatory variable, z, that
is

k∗ = β̂z

where β̂ is an OLS estimator of the coe�cient β in the regression k = βz+ξ.
Using the framework presented above we can compute β̂ as follows:

β̂ =
Cov (k, z)

V ar (z)
= ωδ + γ + ω

Cov (z, t)

V ar (z)

If instead of using actual values k, we use its projections k∗, the estimator
of the learning curve becomes:

α̃ =
Cov (c, k∗)

V ar (k∗)
=

=
δ

γ + δω
+

γ Cov(z,t)
V ar(z)

γ + ωδ + ωCov(z,t)
V ar(z)

The estimator therefore produces the consistent estimate of the learning rate
if Cov (z, t) = 0.

4 (More) Consistent Estimates of the Learning
Rate.

In this section we implement the new estimator using data for the wind turbines
technology. We then compare the coe�cient with the simple OLS estimate that
is usually use in the literature.

In the estimation we use the data on energy prices, policy index, cumulated
installed capacity and instalation costs for the wind turbines technology. The
dataset covers the period 1990 - 2011. Data on energy prices, policy index and
cumulated installed capacity are taken from the Internation Energy Agency
Statistics which can be accessed via stats.OECD. For those variables a (bal-
anced) panel is available covering 34 OECD countries. The data on instalation
costs are taken from the Berkeley Lab 2 and refer to the prices of wind turbines
in US.

Following the procedure described above we �rst regress cumulated installed
capacity on the electricity prices and policy index and installed capacity �ow
(that constitute our vector z). Since for this stage panel data for all variables
are available we use the Fixed E�ect estimator. From the regression we get

2accessed from http://emp.lbl.gov/publications/2012-wind-technologies-market-report
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1990-2007 1990-2011

OLS 8% 4.2%
Two Stage 1 6.9% 3.6%
Two Stage 2 6.7% 2.8%

Table 1: The Learning Rates under various estimators. Two Stage 1 refers to
the estimator which utilized information on energy prices and policy index to
obtain �tted values of cumulated capacity. Two Stage 2 refers to the estimator
which in addition to the two variables use the information on the �ow of installed
capacity (i.e. investment in wind farms) in a given year.

�tted values of installed capacity for all 34 countries. We then aggregate them
to obtain total �tted cumulated capacity for each year.

This series is used as an explonatory variable in the second stage regression
with instalation costs as a dependent variable. The OLS estimate from this
second stage estimator is e�ectively a two stage least squares estimate which
has been described in section 3.2.

Before we implement the two stage estimator, we use our dataset to compute
a simple OLS estimate of the learning rate. In line with the previous �ndings in
the literature, for the period 1990-2011 an implied learning rate is 4.2%. If we
drop the observations after 2007, when the instalation prices are heavily a�ected
by the upward trend in prices of materials, the learning rate is 8%. This is in
line with the estimates available in the literature.

The results indeed indicate that the simple OLS estimator is biased upward.
The two stage estimate of the learning curve predicts a 3.6% learning rate if
vector z includes the price of electricity and the policy index. It drops further
- to 2.8% - if in addition the vector includes the �ow of cumulated capacity in
a given year. If observations after 2007 are dropped the two estimates are 6.9%
and 6.7% respectively.
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Abstract

This paper studies the drivers and e�ects of R&D activity related to
energy saving technologies. We build a theoretical model which establishes
links between energy expenditure, energy-saving R&D investment, inno-
vations and the energy e�ciency improvements. The theoretical model
forms a basis for an econometric model which validates and quanti�es the
above described links. In doing so, we explore the role of cross-country
and intertemporal spillover in the innovative process. The system of equa-
tions that emerges from the theoretical and empirical models can be used
within any Integrated Assessment Model (IAM) to forecast energy saving
technological progress: if an IAM supplies the prediction on the time path
of energy expenditures, the system can use this information to forecast the
expected number of future innovations and energy e�ciency improvement.

JEL classi�cations: O31, O33, Q43
keywords: energy e�ciency, induced innovations, patents economet-
rics

1 Motivation

This paper contributes to two important strands of literature, namely the studies
on the estimation of the ideas production function (Caballero and Ja�e (1992),
Popp (2002), Porter and Stern (2000), Verdolini and Galeotti (2011)) and those
on the impact of innovation on the e�ciency of energy use. We examine the
e�ect of energy prices on the amount of investment in inventive activity (energy-
related R&D), the e�ect of such investment on the production of innovations
and, �nally, the impact of these inventions on the e�ciency of energy use.
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We elaborate on all these links using a tractable theoretical model which
is consistent with the usual setup in the endogenous growth models tradition
(Jones (1995), Romer (1990)). The theoretical model represents the foundation
of an empirical model in which we estimate the e�ect of energy price on energy
related innovation, proxied by patent applications and the e�ect of patents on
energy e�ciency. By combining theoretical and empirical results, we establish
and quantify a simple (log linear) relation between changes in energy prices and
the energy e�ciency growth that stems from technological progress.

There are several contributions we are aiming at. First, using a theoretical
model we show that the e�ect of innovation inputs (R&D investment) on inno-
vation output (patents) can be empirically quanti�ed relying solely on energy
expenditure data. This is a signi�cant contribution, in that it helps to reduce
the measurement error bias linked with the poor R&D investment data available
to researchers1.

Second, by deriving and estimating an energy expenditure - energy patents
relation we contribute to the literature on price induced energy saving tech-
nological change. The topic has been explored by a number of studies: Popp
(2002) also examined the dependance of energy R&D output on energy prices
focusing only on the USA. Verdolini and Galeotti (2011) extended the results
on cross country spillovers to 17 OECD economies. We exotend this futher and
use evidence on ideas production from all mojor economies of the world (also
from outside OECD) and explore the cross-country spill-over e�ects between
them2. In addition, guided by the theoretical model, we replace the price with
energy expenditure as an explanatory variable. The theory lead us to believe
that the latter is a better determinant of incentive to innovate. energy e�ciency
- a reward from innovation - can be thought as a factor of production which may
substitute energy: with one percent increase in energy e�ciency, a �nal good
producer may reduce energy consumption by one percent and save one percent
of energy expenditure.

Third, we examine the e�ect of energy related innovations on energy e�-
ciency. Popp (2001) and Sue Wing (2008) studied the relation between patents
stock and energy use, however the relation can hardly be interpreted as causal
due to the cointegration between the two variables (see for instance Abdih and
Joutz (2006)). In this study we explore the relation between energy e�ciency
growth and �ow of patents - a setup which is less likely to be a�ected by a
cointegration problem.

Fourth, we develop a framework which allows an easy implementation of our
results in almost any Integrated Assessment Model (IAM): based on empirically
estimated parameters we built a simple technology module which, fed with pre-
dictions on energy consumption and energy prices, delivers predictions on the

1Previous studies relating R&D investment and R&D output include Cabalerro and Ja�e
(1992), Porter and Stern (2000) and Abdih and Joutz (2006)

2Previous studies were limited to evidence from US (Caballero and Ja�e (1992), Popp
(2002)) or OECD (Porter and Stern (2000)). Verdolini and Galeotti (2011) extended the
results on cross country spillovers to 17 OECD economies, but no other country was included
due to the lack of R&D data.
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growth of e�ciency in the energy sector. This Technology module is designed
with the purpose of providing a simple tool to endogenize e�ciency of energy use
in those IAMs which previously assumed it to be exogenous. In developing the
module, we targeted two main objectives. First, we ensure that the module is
transparent. We do so by describing the mechanism that links prices and ideas
production with a tractable model and present the intuition behind it. Second,
we validate the links described in the module using our empirical results. For
this reason the theoretical model mirrors the empirical model. This ensures that
the predictions of the module will exactly match the predictions coming from
the econometric analysis. This should result in a signi�cant improvement of
IAMs predictions and should prove very valuable for the modelling community.

2 The Theoretical Model

We start this section with demonstrating that the optimal choice of R&D invest-
ment and the R&D output (ideas generated) is solely determined with expected
energy prices and energy consumption and R&D technology. If these are held
constant R&D input & output is not a�ected by any other changes in economy,
say, changes in interest rate or prices of non-energy good. We do not argue
that variables such as price of materials does not have an import on R&D in-
centive and energy technology developers ignore them when taking decisions on
R&D investment. Since price of metal can in�uence energy consumption R&D
�rms will take them into account in order to better predict the latter. However
material prices wil not have an e�ect beyond the e�ect throught energy prices.
This result is crucial since it implies that the prediction of energy prices and
consumption and assumptions on R&D technology are su�cient to determine
e�ciency changes - no information on demand structure is required. This makes
the model compatabile with a wide range of models.

Suppose that the �nal good is produced with the following production func-
tion by combinging energy and other inputs:

y = y (Ax, z) (1)

where y is the �nal good (real GDP), x stands for energy consumption (in
KWh units), A is the e�ciency with which energy is utilized in �nal good
production (measured in the unit of �nal good per KWh) and z is a vector of
other inputs in �nal goods production, which can be thought of as including,
labour, capital and materials or simply the amount of non-energy good used in
production.

The productivity of energy in �nal good production, At, is function of past
productivity, At−1 and an in�ow of innovative ideas novel in a country at time
t, Pt. The planner (or producer of �nal good) can increase number of new
innovative ideas, but this will require higher R&D expenditure, Rt (measured
in terms of units of �nal good). To allow for 'standing on the shoulders of the
giants' or '�shing out' e�ects (Jones 1995), we let productivity of researchers
in yestarday's ideas production depend on the yestarday's stock of domestic
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knowledge, kt−1 . Furthermore to account for international spillover e�ects, we
allow the relation between number of new ideas and expenditure to depend on
the stock of international knowledge stock, Kt. The stock of domestic knowledge
is a simple aggregation of knowledge stock in the previous period and the in�ow
of new innovative ideas. The stock of world's knowledge could be thought as
an aggregation of the domestic knowledge stock of all other countries3: This is
summarized with the knowledge production function:

A′ = A′ (P,A) (2)

P = P (R, k,K) (3)

k′ = k′ (P, k) (4)

where A′ and k′ denotes next period productivity and knowledge stock re-
spectively.

The planner (or producer of �nal good) maximization problem can be de-
scribed with the following Bellman equation:

V (A, k) = max
x,z,R

{y (Ax, z)− pxx− pzz−R+ βV (A′, k′)} (5)

subject to (2), (3) and (4). In the above expression, px stands for the price
of energy and pz is the vector of prices of other inputs. The price of the �nal
good is normalized to unity, therefore pi represent the price of input i relative
to the price of �nal good.

The �rst Order Conditions with respect to R&D investment imply4

−1 + β
dV (A′, k′)

dA′
∂A′

∂P

dP

dR
+ β

dV (A′, k′)

dk′
∂k′

∂P

dP

dR
= 0 (6)

which can be rearranged as

β
dV (A′, k′)

dA′
A′εA′,P η + β

dV (A′, k′)

dk′
k′εk′,P η =

1

εP,R
Rη (7)

where εm,n is the elasticity of variable m with respect to variable n and η
is an arbitrarily small number. The left hand side represents the bene�t from
increasing the in�ow of novel ideas by 100 ∗ η percent, the right hand side is the
cost of such an increase.

Consider the left hand side of this condition. We can di�erentiate the value
function with respect to the current productivity. After applying the envelope
theorem:

3For the clarity of an exposition we skip the time indices.
4Throughout the paper we assume that the interior solution to the maximization problem

exist and is unique. As described belowed the existence of an interior solution depends not only
on the production function of ideas but also on the demand structure of the economy. Given
we want to avoid setting a speci�c demand structure in order to make the model compatatible
with a wide range of IAMs, the existence needs to be assumed.
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VA (A) = y1 (Ax, z)x+ βVA′ (A
′)
∂A′ (P,A, k)

∂A
(8)

The �rst term on the right hand side can be expressed as a function of energy
expenditures using the First Order Condition with respect to energy:

∂y (Ax, z)

∂Ax
x = px

x

A

If we shift the expression (8) one period forward and multiply both sides by
κ′1/100 we �nd that the bene�t of one precent increase in tomorrow's productivity
is equal to:

dV (A′, k′)

dA′
A′ = p′xx

′ + β
dV (A′′, k′′)

dA′′
A′′εA′′A′ (9)

The bene�t of higher productivity tomorrow translates into higher e�ciency
of energy use tomorrow (the �rst term on the right hand side) and higher pro-
ductivity in subsequent periods (the second term).

To determine the gain from an increase in tomorrow's knowledge stock, we
di�erentiate the value function with respect to the knowledge stock and again
apply the Envelope Theorem.

dV (A′, k′)

dk′
k′ = β

(
dV (A′′, k′′)

dA′′
A′′εA′′,P ′ +

dV (A′′, k′′)

dk′′
k′′εk′′,P ′

)
εP ′,k′

+β
dV (A′′, k′′)

dk′′
k′′εk′′,k′ (10)

This condition summarizes the intertemporal spillover e�ect of innovation:
any enlargement of the knowledge stock will help to produce ideas in following
periods and subsequently lead to further increase in e�ciency5.

Collecting equations (7), (9) and (10) we can summarize the equilibrium as
a system of three equations6:

 Rt
dV (At,kt)

dAt
At

dV (At,kt)
dkt

kt

 =

 0 εPRεA′P εPRεk′P
1 εA′A 0
0 εA′,P εP,k εk′,P εP,k + εk′,k


 ptxt
β dV (At+1,kt+1)

dAt+1
At+1

β dV (At+1,kt+1)
dkt+1

kt+1


(11)

5In particular, an increase in tomorrow's knowledge stock will contribute to future gains
through three channels: �rst, higher knowledge will increase the productivity of researchers
and thus will lead to higher production of innovative ideas. Second, more ideas will result
in higher productivity and higher knowledge stock in the subsequent period. Third, �given
that knowledge does not depreciate immediately, a larger knowledge stock in the subsequent
period will directly contribute to the knowledge stock in the following periods.

6Note that elasticities should have time indices: thus e.g. εPR stands for εPtRt and εA′P
denotes εAt+1Pt . The time indices were however supressed for clarity of an exposition
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Notice that neither the production function y, nor the vectors z or pz appear
in condition (11). The research expenditre depends solely on energy expendi-
ture, the current stock of knowledge, the current productivity and the R&D
production function (elasticities listed in the matrix). Furthermore if the elas-
ticities in the matrix in (11) are constant in all periods, then research expendi-
ture, R, is a simple linear function of future energy expenditures pxx. Finally, if
future energy expenditures are assumed to grow at the constant rate , then re-
search expenditure is proportional to current energy expenditure, i.e. elasticity
of researhc expenditure with respect to energy expenditure is a unity:

log (R) = log (ptxt) + c0

where c0is a constant composed of elasticities.
This simple result is a good point to trace the intuition behind the model. In

a simple static model the interpretation behind the last result would be streight-
forward: energy e�ciency as de�ned in equation (1) can be thought as a factor
of production which may substitute energy: with one percent increase in energy
e�ciency, a �nal good producer may reduce energy consumption by one percent
and save one percent of energy expenditure. If energy expenditure increases,
the marginal bene�t from energy e�ciency must therefore increase proportion-
ally. Suppose now that energy expenditure double and so does marginal bene�t
from one percent of e�ciency improvement. With constant elasticity of energy
e�ciency with respect to �ow of new innovations, the marginal bene�t from one
percent increase in number of innovations must also double. This will incen-
tivise R&D investment up to the point in which marginal cost of a percentage
increase in number of innovations is twice as high as it was before.

The dynamics in the model complicates the analysis. However if all elastic-
ities are constant, the system becomes log-linear and marginal bene�t from a
percentage increase in number of innovations today becomes a weighted sum of
future gains. Under an assumption of constant growth of energy expenditures,
higher today's energy expenditure must imply proportionally higher expendi-
tures in the future periods. Twice higher energy expenditures today implies
twice higher discounted �ow of future gains.

The next question is whether we oversee substiantial part of the story by
assuming constancy of the elasticities and energy expenditure trend.

The future energy expenditures that appears in the condition (11) must be
predicted by the R&D investors. According to Anderson et al. (2011) fuel prices
can be approximated with a random walk. For this reason future prices will be
best approximated with the price level observed at the time of the decision on
R&D investment. Investors needs also to predict also a path of energy con-
sumption. Given the variety of prediction techniques that could be potentially
applied for this purpose by R&D companies, we stand on the position that
approximating those predictions with a linear trend is the best choice.

We are left with a question wether indeed the elasticities can be treated as
constant.

First, in line with the standard endogenous growth models setup we assume
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that the production of novel ideas takes the form

P = Rφ1kφ2Kφ3

implying that the elasticities εP,R = φ1 and εP,k = φ2 are constant.
The endogenous growth literature does not however provide a consistent

answear on the speci�cation of equation (2). We consider two possibilities: �rst
is inspired by the most standard strand in the literature following the models
by Romer (1992) and Jones (1995). In these models knowledge and e�ciency
are formed with the perpetual rule::

k′ = A′ = bP + (1− δ)A (12)

Accumulation of knowledge is therefore analogous to the accumulation of
capital: every period a fraction of knowledge stock depreciates and it is fueled
with the �ow of new knowledge. Given this functional form, the elasticity of
future productivity with respect to today's �ow of ideas takes the form εAt+1Pt =

1− 1−δ
gt

, where gt denotes the growth of productivity between periods t and t+1.
Since εAt+1Pt depends on productivity growth, g, and this growth depends on

R&D expenditure, the relation between research expenditure and energy expen-
diture described in equation (11) is non-linear and the former is not proportional
to the latter. In particular, it can be shown that the relation becomes:

logRt = c0 +
1

1− 1−δ
gt
φ1ω0

log (px,t+1xt+1)

where c0 and ω0 are constants composed of elasticities and expenditure
growth rates and ω0 takes the values between zero and one.

The alternative functional forms for A′ (P,A) and k′ (P, k) can be borrowed
from Caballero and Ja�e (1993):

At =

(ˆ Nt

−∞
(x̃t (q) θq)

α
dq

) 1
α

(13)

This functional form aims at capturing that that every new innovation gen-
erates a new intermediate good, or a new process which utilizes energy. The
e�ciency of a process improves with each subsequent innovation, thus if q in-
dexes the order of arrival of innovations, a good q+1 is more e�cient than good
q by a factor θ. Furthermore the form allows for complimentarity between new
goods. The complimentarity is governed by parameter α. x̃t (q) is a fraction of

total energy utilized by a process q,
´ Nt
−∞ x̃t (q) dq = 17.

The knowledge stock - understood as an accumulation of previous ideas
which could aid inventors in generating new ideas - can be expressed as:

kt =

(ˆ Nt

−∞
ψqeδ(q−N)dq

)
(14)

7Therefore Ax =
(´Nt
−∞ (x (q) θq)α dq

) 1
α

where xs is a total amount of energy consumed

by process q
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That is a sum of inventions weighted by their spillover value8. Every new
innovation adds to the knowledge stock a value of ψq. In addition arrival of an
idea leads to an obsolence of the previous ideas: this is captured in the term,
e−δ(Nt−q) - the term is a unity for the newest idea and decreases with a distance
to the newest innovation.

Notice that we do not need to restrict ψ to be larger than one9. If ψ is
exactly unity then the knowledge stock is constant - a gain from the �ow of new
ideas is exactly o�set by the loss due to obsolence of older ideas. If new ideas
are more insipiring than the older ideas, thenψ > 1 and �ow of new ideas leads
to an increase in the value of the knowledge stock. Finally if new ideas are less
and less valuable, ψ < 1 and knowledge stock is shrinking with a �ow of new
knowledge.

Since we are going to estimate ψ in the empirical section, we are able to
verify the Popp's (2002) hypothetsis that as number of past patents increases,
their spillover value for future innovators decreases. Popp tests his hypothesis
using data on citations. Needless to say, probabylity of being cited provides only
a proxy for a spillover value of a patent: the accumulation of previous patents
mounts up research experience of inventors and hence leads to their higher cre-
ativity. While researchers gather expericence they do not have to quote their
previous works. An examination of the direct relation between patents produc-
tion and accumulation of knowledge - as presented in the empirical section - can
be therefore an interesting alternative to Popp's hypothesis testing.

These alternative speci�cation can be compared to the traditional setup
described with equation (12). To do so notice that the (14) can be expressed in
a discrete time as:

kt =
t∑

s=−∞

(
elog(θ)Ns−δ(Nt−Ns)

)
Ps

while equation (12) can be restated as

kt =
t∑

s=−∞
(1− δ)t−s Ps

In both cases knowledge is a discounted sum of patents - what di�ers is
the discount factor: in traditional setup the discount is a distance between the
patents and the frontier in the time space. In the alternative setup of (14) the
discount depends on how many innovations have been made beofer cohort s and
how many ideas have been invented between cohort s and the latest cohort.

The two function could be simpli�ed to10

At = At−1θ
1

1−2αPt

8An analogue of the citation function in the Caballero and Ja�e (1993)
9However we need to assume that log (ψ) > −δ. Otherwise the integral does not converge.
10For a details of the derivation see the technical appendix. Note that x̃ (q)'s are chosen

endogenously in the model and satisfy the First Order Conditions for the output maximization.
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kt = kt−1ψ
Pt (15)

the speci�cation predicts εAt+1Pt = log(θ)
1−2αPt, εkt+1Pt = log (ψ)Pt and

logRt = c1 +
1

1− φ1ω1
log (px,t+1xt+1) (16)

where c1 is a constant and ω1 = 1 under the assumption that the elasticity of
e�ciency with respect to �ow of new ideas in distant future periods, εAs+1,Ps for
s > t is constant and ω1 is between zero and one if this assumption is relaxed.
The simulation exercise with various parameter values reveals that ω1 varies
only marginally and is consistently very close to unity. For this reason we will
simply assume ω1 = 1

In the empirical section we will favour the second speci�cation. There are
two reasons for this. First, the obsolence of new ideas due to the arrival of new
ideas appears more intuitive then the traditional assumption of obsolence due
to passage of time. Second, the function (13) carries a possibility to interpret
technological progress as a sequence of radical innovations. Notice that the
equation above can be reexpresed with11

At =

(
1 +

log (θ)

1− 2α
Pt

)
At−1 (17)

As described in the technical appendix 'Radical Innovations' the function can
be described as follows: Suppose that each year brings Pt potential innovation.
Each innovation may improve e�ciency by factor µ, with µ being a random

variable distributed with Frechet distribution with the scale parameter θ
1

1−2α ,
shape parameter v and location parameter m = 1. Suppose that each year only
the best innovation is chosen and implemented. In this case the e�ciency next
period is going to take the form:

At =

(
1 +

log (θ)

1− 2α
P vt

)
At−1 (18)

which correspends to the expression (17) except for the presence of parameter
v. The presence of this parameter will be discussed in the empirical section.

Before we conclude this section we should discuss a few limitations of the
model.

First, the model, contrary to most endogenous growth models the model
does not describe the monopoly power of the innovator. It also ignores any
competition between innovators. As a result the drivers of innovative activity
in the model are di�erent then the one usually presented in the endogenous
growth literatur. One can interpret the value function (5) as a share-holder
value of a monopolist. The incentive for the technological improvement is a
cost minimization - in particular, minimization of the cost of energy. Instead

11using the approximation ∆ log (At) = ∆At
At−1
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the usual driver of innovative activity in other models is the �ght for consumers
- the monopolystic competitors improve their products in order to capture a
larger share of the market. In the context of energy saving economies, both,
competition for customers and monopolists' cost minimization may be a driver
of research and development.

The usual outcome of the models which focus on competition between in-
novators (Romer (1991), Grossman and Helpman (1991), Aghion and Howitt
(1992), Young (1998)) is that the rate of technological progress depends solely
on the parameters of the knowledge production function - the initial level of
inputs costs, or their non-technological determinants does not have any impact.
As a result an empirical section might be seen as a test: if the energy e�ciency
improvement comes solely as a consequence of competiton for market shares,
as described by the traditional models, energy expenditure should not play any
role in predicting the number of patents. If instead the empirical model suggest
a signi�cant impact of energe expenditure, one may refer to the model developed
in this section to explain it.

Another important note regards the existance of an equilibrium. The �rst
is that the condition (11) is a necessary - not su�cient - condition of the max-
imization problem: it characterizes the equilibrium if such as equilibrim exists
and is interior (i.e. the equilibrium does not involve corner solutions such as
zero investment in R&D) . The existence of an equilibrium and whether it is
characterized by a corner solution will in general depend on the structure of
demand for energy: the production function of the �nal good and the quanti-
ties and prices of other inputs. When incorporating the module into Integrated
Assessment Models care needs to be taken to ensure that an interior solution to
the maximization problem is reached.

Before we proceede to the empirical section, we shall summarize the con-
clusions we can derive from the theoretical model and how we can utilize them
in forming prediction on future growth. First we know that an increase in ex-
pected energy expenditure by 1% will lead to an increase in research expenditure
by 1

1−φ1
percent. Since the elasticities εP,R = φ1 and εP,k = φ2 are assumed

constant, in line with endogenous growth literature, the in�ow of new knowl-
edge is determined by a simple log-linear relation between research expenditure,
domestic and world knowledge:

log (Pt) = φ1 log (Rt) + φ2 log (kt) + φ3 log (Kt) + c1 (19)

Finally, new knowledge is aggregated with the current e�ciency and results
in higher productivity in the following period:

∆ log (At) =
log (θ)

1− φ1
Pt (20)
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3 Empirical Analysis

3.1 Setup of the Empirical Model

In this section, we empirically estimate some of the parameters derived from
the theoretical model set up above. The �rst equation for the empirical model
is derived directly from combining equation (16) with equation (19):

log (Pt) = φ0 +
φ1

1− φ1
log (px,t+1xt+1) + φ2 log (kt) + φ3 log (Kt) (21)

To estimate this equation we need to �nd the empirical proxies for the �ow
of new knowledge, P , the productivity level, A, the domestic knowledge stock,
k , the foreign knowldge stock, K, and energy expenditures pxx. We use patent
data as a proxy for the number of ideas that are novel in a country at time t.
Speci�cally, we select patent relative to energy demand technologies (recovery
of waste heat for energy, heat exchange, heat pumps, Stirling engines, continu-
ous casting processing of metal) from the NBER database. The NBER patent
database includes all patents granted by the USPTO by both USA and foreign
innovators up to 2002. We assign each granted patent to the year of application
and to the country of residence of the inventor.

Although the �ow of ideas that are new in a country is likely related to
number of patents, setting P proportional to the number of patents might be
a too strong assumption. Instead we follow Porter and Stern (2000) and take
into account that not all ideas that are novel in a country are novel to the world
(and can be internationally patented). Under assumtpion that the novelty of
the idea is Pareto distributed and the idea can be patented only if it passes the
threshold of the world knowledge frontier, K, the relation between number of
patents, P ∗ and in�ow of domestically new ideas, P , is

P ∗ =
P

Kµ

where v is the parameter of the pareto distribution. Due to this relation,
equation (21) takes the form

log (P ∗t ) = φ0 +
φ1

1− φ1
log (px,txt) + φ2 log (kt) + (φ3 − µ) log (Kt)

Notice that while the coe�cient on log (kt) can be interpreted as an elasticity
of new ideas with respect to own stock of knowledge, the interpretation of the
coe�cient on log (Kt) is less clear. We return to this issue after discussing the
second estimable equation.

Turning to the other independent variables in the estimation of (21), the
own knowledge stocks are built using patent data and equation ((15)) from the
theoretical section:

log (kt) =
t∑

s=0

Pt
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Notice that this strongly resembles the speci�cation in Cockburn and Griliches
(1988) and Verdolini and Galeotti (2011) although it has been derived from dif-
ferent microfoundations. The foreign knowledge stock are also built following
Verdolini and Galeotti (2011). For each country, the log of stock of available
foreign knowledge is de�ned as the sum of each foreign country's knowledge
weighted by the di�usion parameters which are estimated in that study. We
lag knowledge stocks by 3 years to control for the non-immediate di�usion of
knowledge and to re�ect the time lag between the year researchers work on inno-
vation and the year in which patent is applied for. The proxy for expenditures is
constructed as the product of total energy supply and the ratio of energy price
(cpi for energy) to �nal good price (cpi) and is lagged 5 years to re�ect that the
decision on how much to invest in the R&D process is not contemporanoue to
the R&D investment.

To link the model to the empirical application we make two additional as-
sumptions, in line with the literature on patent data as proxy of innovative out-
put. First, we assume that P is distributed Poisson with Poisson Arrival Rate
λ = aRφ1kφ2Kφ3ε. Second, we assume that the Poisson Arrival Rate is itself

a random variable. Its distribution is given by λ ∼ Gamma
(
ϕ, aR

φ1kφ2Kφ3

ϕ

)
where ϕ is a distribution parameter which can be estimated. These two assump-
tions imply that the distribution of patents is negative binomial. This is in line
with previous literature, where the negative binomial distribution is frequently
used and is considered a good approximation of the patent count distribution
observed in the data. The assumptions on the distribution of patents count
enables us to estimate equation (21) using Maximum Likelihood. In the base-
line regression we have included a vector of controls, x, which contain full set
of country, time and patent category �xed e�ects. The regression is therefore
represented by the equation

P ∗ict = exp [β0 + β1 log (px,ictxict) (22)

+β3 log (kict) + β4 log (Kict) + x] ε+ η

where i indexes countries, c - patents categories and t - a year of patent
application.

Next, we turn to the empirical model which links number of patents and
improvements in energy e�ciency. Transforming equation (20) from the theo-
retical section:

log (gA) = v log (Pit) + log (log (θt)) + ci + ξit

where gA ≡ ∆ log (At) can be interpreted as a growth of energy e�ciency12.
The presence of parameter v is predicted by the setup which allows for radical in-
novations (see equation (18)). Under the original speci�cation of equation (17),
v = 1. However in the empirical model we hesitate to impose this restriction -

12Indeed, using an approximation ex ≈ x+ 1 for small x, ∆ log (At) ≈ ∆At
At−1

for reasonable

growth rates.
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instead we prefer data to speak for themselves. Finally, we allow the economic
value of an innovations, captured in θ, to depend on the world technological
frontier, approximated with foreign knowldge stock, Kit. Thus, log (θt) = Kϑ

it.
If ϑ < 0, we would witness a �shing-out e�ect in the value of innovations: the
further the frontier moves, the more di�cult it is to generate high value in-
novations. If instead ϑ > 0, we would witness a standing on the shoulders of
giants in the value of innovations: the more knowledge is accumulated the more
valuable patents are produced.

We use two alternative meassures of energy e�ciency meassure, At. The
�rst is the simple meassure of energy intensity: At = yt

xt
where yt is the real

GDP and xt is the energy consumption. The second meassure is constructed
under the assumption that �nal good (GDP) is the CES composite of energy
services and non-energy services. Energy services are de�ned as a product of
energy supply and energy e�ciency level At. The meassure of At is derived from
manipulating the �rst order conditions for �nal goods' producers optimization
problem. The construction is presented in detail in the technical appendix.

Since number of innovative ideas is unobservable, as before, we need to
replace it with a function of patents count and world stock of knowledge. The
estimable equation can be therefore stated as:

log (gA,it) = α1 log (P ∗it) + α2 log (Kit) + ci (23)

where α2 = vµ+ ϑ and α1 = v.
As noted before, due to an unknown relation between �ow of new ideas and

number of patent applications, the identi�cation of the parameters φ3 and α3 is
not feasible. However as long as we are interested only in the cumulative e�ect
of world's knowledge stock on the productivity growth, we can simply compute
it by combining coe�cients α2 + α1β4 = vµ+ ϑ+ v (φ3 − µ) = ϑ+ vφ3.

3.2 Regression Results

The results emerging from the estimations of (22) are summarized in column 1
in table 1. The results are largely in line with the �ndings of the other studies
in the literuature: all coe�cients are positive and statistically signi�cant. Sig-
ni�cant coe�cient on own knowledge accords with the �ndings of Verdolini and
Galeotti (2011), Popp (2002) and Porter and Stern (2005). The coe�cient might
appear small, however economically it appears to be reasonable: an addition of
100 patents to the country portfolio increases the probability of generating a
valuable patent by 2%. The results con�rm also the role of foreign knowledge
spillovers for the domestic innovation process, however since patents in a foreign
knowledge stock have been weighted the coe�cient is harder to interpret. Fur-
thermore we shall remember that, as described in the previous subsection, the
coe�cient captures not only the size of international spillover but also a propen-
sity to patent a new idea. Finally, in line with Popp (2002) and Verdollini and
Galeotti (2011), the energy expenditure emerges as an important determinant
of innovative activity in energy sector. Small and statistically insigni�cant value
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of the coe�cient on the expenditure-growth interaction term suggests that the
e�ect of energy expenditure on the patenting activity does not vary with the
expected growth of e�ciency.

Column (3) depicts the results of the regression which includes a meassure
of a country distance to the frontier economy: the ratio of own to US GDP
per capita. Relative wealth of the country could be indeed a factor that drives
the spurious correlation between patent counts and own stock of knowledge
or energy expenditure. However the inclusion of the control hardly changes
the results. The correlation between patent counts and own knowledge stock
may also result from the higher propensity to patent in certain countries in
certain periods - for example as a result of favourable legislation. To absorb
the propensity to patent e�ect we include on the right hand side the count for
patent applications related to the production of energy. Again, as shown in
column (4) this does not alter the results substantially. Column (5) excludes
from the sample all observations for which own knowledge stock is equal to zero -
e.g. if a country made its �rst patent application in the category of 'heat pump'
in 1995, all the observations prior to that date are excluded from the regression
estimation. The results suggest that exclusion of non-innovators does not a�ect
the coe�cients on knowledge stocks. It does however lower the e�ect of energy
expenditure. This result suggest that a change in energy expenditure could be
an important impulse for a country to start a patenting activity. In the �nal
column of table 1, we explore the international spillover e�ect in more detail: for
each observation we construct two foreign stocks of knowledge: the knowledge
in the region the country belong to13 and the knowledge stock of the countries
outside the region. Both coe�cients are signi�cant, however it appears that
innovations outside the region has a stronger impact on probability to patent
than innovations from other countries in the same region.

We also explore how the estimates vary if we change the time lags in the
model. In column (7) in table 2 we add energy expenditure lagged 7 years on
the right hand side of the regression. It turns out that the energy expenditure
lagged �ve years drops while the energy expenditure lagged seven years arises to
be more important determinant of patent count. This may lead us to the con-
clusion, that the time lag between energy expenditure and patents application
may be even longer than 5 years. In column (8) we test the alternative setup in
which the decision on R&D investment is driven by the growth of expenditure
rather than its level. The coe�cient on growth however turns out to be negative
and the positive e�ect of the level is reinforced. In column (9) we shorten the
lag of all independent variables. The coe�cients on own and foreign knowledge
stock lagged two years have similar estimates as the stocks lagged three years.
However the coe�cient on energy expenditure lagged four years is lower than in
regression with �ve years lag. This �nding again points out that a longer lags
are necessary to capture the positive impact of energy expenditure on patenting
activity.

13We clasify each country in the sample as a member of one of the 10 regions: USA, Western
Europe, Eastern Europe, Australia & South Korea, Canada, Japan & New Zealand, Middle
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full sample innovators only
(1) (2) (3) (4) (5)

energy expenditure {t-5} .860*** .931*** 1.039*** .672** .672**
(.326) (.335) (.347) (.327) (.327)

own knowledge {t-3} .0002*** .0003*** .0002*** .0003*** .0003***
(.00007) (.00007) (.00007) (.00007) (.00007)

foreign knowledge {t-3} .0005** .0005** .0004 .0007***
(.0002) (.0002) (.0002) (.0002)

region knowledge {t-3} .0008
(.0007)

world knowledge {t-3} .0006***
(.0002)

GDP relative to US {t-5} -.547
(.639)

energy supply patents {t-5} .137**
(.065)

Table 1: The dependent variable is count of patents related to one of demand
for energy patent categories. ***, **, * indicate signi�cance of the coe�cients
at the 1%, 5% and 10% level, respectively. 'energy-growth' is the interaction
term: a product of energy consumption and growth of energy e�ciency. 'Energy
supply patents' is a count of patents related to production of energy (such as
solar or wind energy patents). All regressions contain full set of country, time
and patents category dummy variables. All variables are transformed with a log
function. The estimations are obtained using a Maximum Likelihood estimator.
The probability distribution assumed is the negative binomial. Columns (4) and
(5) excludes from the sample all observations for which own knowledge stock is
equal to zero - i.e. if a country made its �rst patent application in the category
of 'heat pump' in 1995, all the observations prior to that date are excluded from
the sample. The reason why non-innovators are exluded from regression (5)
is that the maximum likelihood estimator does not converge for a full sample.
Standard errors are reported in parenthesis..
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(2) (6) (7) (8)

energy expenditure {t-5} .860*** .211 1.405***
(.326) (.576) (.474)

energy expenditure {t-4} .600**
(.306)

energy expenditre {t-7} .909
(.560)

energy expenditure growth {t-5} -.830
(.532)

own knowledge stock {t-3} .0002*** .0003*** .0003***
(.00007) (.00008) (.00008)

own knowledge stock {t-2} .0002***
(.00007)

foreign knowledge stock {t-3} .0005** .0005** .0005**
(.0002) (.0002) (.0003)

foreign knowledge stock {t-2} .0006***
(.0001)

Table 2: The dependent variable is count of patents related to one of demand
for energy patent categories. ***, **, * indicate signi�cance of the coe�cients at
the 1%, 5% and 10% level, respectively. 'energy expenditure growth' is the three
years growth of energy expenditure. All variables are transformed with a log
function. All regressions contain full set of country, time and patents category
dummy variables. Standard errors are reported in parenthesis.
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Random e�ect Fixed e�ect
(1) (2) (3) (4)

patents count {t-4} .143 .335** .217 .325*
(.097) (.147) (.160) (.188)

foreign knowledge stock {t-4} -.0001 .0005* -.0001 .0005*
(.0002) (.0003) (.0002) (.0003)

energy expenditure {t-7} -.450** -.524
(.191) (.749)

constant -3.405*** -2.293*** -3.345*** -1.861
(.260) (.688) (.298) (2.980)

Table 3: The dependent variable is a meassure of energy e�ciency: a ratio
of gdp to energy consumption. A dependent variable is smoothed with a �ve
year moving average. ***, **, * indicate signi�cance of the coe�cients at the
1%, 5% and 10%. All variables are after log transformation. Since number
of observations include a zero patent count, each regression includes a dummy
variable for no patents in a year in a country. Columns (1) and (2) reports
a results for a random e�ect model, columns (3) and (4) reports a result for
regressions with countries �xed e�ects. The foreign knowledge is a sum of foreig
knowledge stock across patents categories described in the text. Standard errors
are reported in parenthesis.

Table 3 reports the results for the estimation of the e�ect of patents on
energy e�ciency. Clearly, number of new patents plays a role in shaping the
energy e�ciency. The estimates implies that doubling number of patents would
lead to 22% increase in the growth of energy e�ciency. The foreign knowledge
stock on the other hand has a negative impact on e�ciency growth, although
this result is not very robust.

To rule out the possibility that the results are driven by the spurious corre-
lation due to omission of lagged energy expenditure14, we include it as a control
and report the results in column (2) - clearly the results are only reinforced. In-
clusion of country �xed e�ects reduces the power of the test and leads to lower
statistical signi�cance of the coe�cient on the patent counts. The coe�cient
remain signi�cant at the 10% con�dence level. Their values are very close to
the values reported in column (1) and (2).

4 Technology Module

In this section we develop a framework which allows an easy implementation
of our results in almost any Integrated Assessment Model (IAM): based on

East, South Asia, East Easia, China and Latin America
14Due to price substitution e�ects we would expect output-energy ratio to depend on the

energy prices. If in addition energy prices are correlated with patent count, energy e�ciency
and patent count would be correlated even if induced technological change has not e�ect on
e�ciency.
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empirically estimated parameters we built a simple technology module which, fed
with predictions on energy consumption and energy prices, delivers predictions
on the growth of e�ciency in the energy sector. This Technology module is
designed with the purpose of providing a simple tool to endogenize e�ciency of
energy use in those IAMs which previously assumed it to be exogenous.

The module is constructed using equations (22) and (23) and the point
estimates from column (1) in table 1 and column (1) in table three. By �rst
di�erencing the equations, using an approximation ∆ log (A) ≈ gA where gA is
a growth of energy e�ciency and applying the result that ∆ log (kit−5) = Pit−5

and ∆ log (Kit−5) =
∑
j 6=i Pjt−5we arrive to the following system of equations.

∆ log (P ∗it) = 0.86∆ log (pxt−5xt−5) + 0.0002 ∗ 5 ∗ P ∗it−5 + 0.0005 ∗ 5 ∗
∑
j 6=i

P ∗jt−5

∆ log (gA) = .143∆ log
(
P ∗it−5

)
− 0.0001 ∗ 5 ∗

∑
j 6=i

P ∗jt−5

P ∗it = e∆ log(P∗it−5)P ∗it−5

The technology module can be implemented in an integrated assessment
model as follows: The �rst equation utilizes information on the energy expen-
ditre growth predicted by the IAM and initial �ow of patents15 to predict the
growth in production of patents. This number is used by the second equation
to form the prediction on the growth in growth of energy e�ciency and by the
third equation to updated the knowledge stock available to the country in future
periods.

For demonstration purposes we use a forecast of energy expenditure growth
predicted by the WITCH integrated assessment model. The model predicts
that in US energy expenditure will grow at approximately 3% per 5 years, and
growth will gradually increase to 4% by 2030. From that date the growth will
be decreasing to reach 1.5% in 2050. Given this path, the knowledge production
matrix forecast a relatively stable increase in a growth of energy e�ciency from
1.4% growth per year in 2005 to 1.9% in 2050. The spillover e�ects will lead
to a gradual acceleration of the innovations process and so e�ciency growth,
however will be noticeable only from 2040. The growth of energy e�ciency in
US is presented in graph 1.

5 Summary

The aim of this paper was to study drivers and consequences of a price induced
technological change. First, we have derived a theoretical model to describe
how innovation may be induced by changes in energy expenditure and how �ow
of new ideas may be turned into an energy e�ciency gain. The links between

15The initial �ows of patents until 2000 are available from the authors upon request
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Figure 1: Growth of energy e�ciency predicted with Knowledge Production
Matrix

energy expenditure and innovations and innovations and energy e�ciency have
been then validated and quanti�ed using an empirical model. In the last step
we have used the results to forecast future energy e�ciency growth.

The results of the analytical section can be summarized in several points:

• A simple one period model predicts that if elasticity of energy e�ciency
gain with respect to energy saving R&D investment is constant, then elas-
ticity of energy saving R&D investment with respect to forecasted energy
exenditure is constant and equal to unity: 1% increase in forecasted energy
expenditure induced 1% increase in R&D spending.

• The simple intuition behind this result is that, due to the degree of sub-
stitability between energy and energy e�ciency, the value of increasing
energy e�ciency by 1% is the same as a bene�t from reducing energy con-
sumption by 1% - which is 1% of an energy expenditure. On the other
hand marginal bene�t from 1% e�ciency increase must be balanced with
its marginal costs. Under constancy of elasticities the cost of 1% increase
in e�ciency is proportional to 1% of R&D spending. Hence, proportion-
ality between research investment and energy expenditure.

• As long as the decion maker in the model assumes constant growth of
energy expenditures in future periods, we obtain the same result in a
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model with the dynamic optimization problem. Furthermore, inclusion
of the spillover e�ects - when the performed research carries an addional
bene�t in the form of accumulation of knowledge/experience stock which
ease future R&D process - the result is not changed.

• However what does change the result is a drop of the assumption on the
constancy of the elasticities. For instance, if e�ciency is proportional to
knowledge stock, and the stock accumulates perpetually (like capital in
standard model)16, the elasticity of e�ciency gain with respect to R&D in-
vestment depends positively on e�ciency growth. In this case the relation
between energy expenditure and R&D investment will depend negatively
on e�ciency growth. If in turn we assume that growth of e�ciency is
proportional number of inventions and production of inventions to be a
Cobb-Douglas function of R&D investment 17 then the elasticity depends
negatively on the number of inventions. It can be show that in this case
elasticity of R&D expenditure to energy expenditure remains constant,
however it is no longer equal to unity.

• If elasticities in the production function of ideas are constant, or if we
assume the Caballero and Ja�e speci�cation, the model predicts a simple
log linear relation between energy expenditure and number of innovations
and a linear relation between e�ciency growth and number of inventions.

The results of the empirical part can be summerized as follows:

• The regression results suggest a statistically signi�cant relation between
(lagged) energy expenditure and patents in the key energy demand tech-
nologies. The result predicts that a 10% increase in energy expenditure
leads to a 9% increase in number of patents 5 years later. The result is
robust to inclusion of country, time and technology speci�c �xed e�ects,
controls for patenting activity in energy sector and meassures of GDP.
The results weakens if we shorten the lag between dependent variable and
regressors.

• The model predicts a statistically signi�cant relation between production
of patents and an accumulation of past knowledge (meassured as a stock
of past patents), both, within the country and abroad. 100 additional
patents in a history of a country increases the production of patents (or
probability of patenting) by 2%.

• The �ow of patents is positively correlated with the growth of energy e�-
ciency. However the relation is not statistically signi�cant in all empirical
models considered. This is in accordance with a number of studies analyz-
ing empirically the e�ect of patents. The point estimates suggest that an
inrease in number of patents by 10% leads to an 1.5% increase in e�ciency
growth.

16This is the most traditional Romer/Jones endogenous growth models speci�cation.
17This is a speci�cation analogous to Caballero and Ja�e.
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Finally we demonstrate how the theoretical and empirical results can be com-
bined to forecast future energy e�ciency growth. Using the predictions on en-
ergy expenditure from WITCH, the integrated assessment model, we conclude
that

• we expect a stable increase in a growth of energy e�ciency from 1.4%
growth per year in 2005 to 1.9% in 2050. The spillover e�ects will lead to
a gradual acceleration of the innovations process and so e�ciency growth,
however this e�ect will be noticeable only from 2040.
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The results if the knowledge stocks depreciate every period (assuming 10% an-
nual depreciation rate)
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full sample innovators only
(1) (2) (3) (4) (5)

energy expenditure {t-5} .770** .822** .895*** .749** .520*
(.316) (.323) (.335) (.316) (.312)

own knowledge {t-3} .0008*** .0008*** .0008*** .0008*** .001***
(.0001) (.0001) (.0001) (.00001) (.0001)

foreign knowledge {t-3} .003*** .003*** .003*** .004***
(.0006) (.0006) (.0006) (.0006)

region knowledge {t-3} .005***
(.001)

world knowledge {t-3} .003***
(.0006)

GDP relative to US {t-5} -.630
(.618)

energy supply patents {t-5} .129**
(.064)

Table 4: The dependent variable is count of patents related to one of demand
for energy patent categories. ***, **, * indicate signi�cance of the coe�cients
at the 1%, 5% and 10% level, respectively. 'energy-growth' is the interaction
term: a product of energy consumption and growth of energy e�ciency. 'Energy
supply patents' is a count of patents related to production of energy (such as
solar or wind energy patents). All regressions contain full set of country, time
and patents category dummy variables. All variables are transformed with a log
function. The estimations are obtained using a Maximum Likelihood estimator.
The probability distribution assumed is the negative binomial. Column (5)
excludes from the sample all observations for which own knowledge stock is
equal to zero - i.e. if a country made its �rst patent application in the category
of 'heat pump' in 1995, all the observations prior to that date are excluded from
the sample. Standard errors are reported in parenthesis..
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(1) (6) (7) (8)
energy expenditure {t-5} .770** .204 1.281***

(.316) (.564) (.457)

energy expenditure {t-4} .535*
(.294)

energy expenditre {t-7} .796
(.549)

energy expenditure growth {t-5} -.737
(.519)

own knowledge stock {t-3} .0008*** .0008*** .0008***
(.0001) (.0001) (.0001)

own knowledge stock {t-2} .0008***
(.0001)

foreign knowledge stock {t-3} .003*** .003*** .003***
(.0006) (.0006) (.0006)

foreign knowledge stock {t-2} .003***
(.0005)

Table 5: The dependent variable is count of patents related to one of demand
for energy patent categories. ***, **, * indicate signi�cance of the coe�cients at
the 1%, 5% and 10% level, respectively. 'energy expenditure growth' is the three
years growth of energy expenditure. All variables are transformed with a log
function. All regressions contain full set of country, time and patents category
dummy variables. Standard errors are reported in parenthesis.
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